Examples of plotting curves from curvature.

We have seen that given a continuous function $\kappa:[a, b] \rightarrow \mathbb{R}$ that there is a curve $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{2}$ with curvature κ. On the class web page
https://ralph-howard.com/Classes/Spring2024/551/
You can down load the file

```
plot_from_curvature.ipynb
```

which lets you input the interval $[a, b]$ and the function κ and gives you a plot of the curve. Here are some examples, some of which I found surprising. The last two examples that show a small change in the curvature can make a large change in the shape of the curve. The next to last curve is has $\kappa(s)=4+3 \sin (s)$ on $[0,20 \pi]$ and the one after is has $\kappa(s)=4.1+3 \sin (s)$ on the same interval.

Figure 1. $\kappa(s)=s$ on the interval $[0,30]$.

Figure 2. $\kappa(s)=\sin (s)$ on the interval $[0,30]$.

Figure 3. $\kappa(s)=\sin (s)+5 \cos (2 s)$ on the interval $[0,10 \pi]$.

Figure 4. $\kappa(s)=\sin (s)+2$ on the interval $[0,10 \pi]$.

Figure 5. $\kappa(s)=e^{s} \sin (s)$ on the interval $[0,10 \pi]$.

Figure 6. $\kappa(s)=s^{3} / 5$ on the interval $[0,10 \pi]$.

Figure 7. $\kappa(s)=s(s-1)(s-2)(s-3)(s-4)(s-5)(s-6)$ on the interval $[-1,7]$.

Figure 8. $\kappa(s)=4+\sin (s)$ on the interval $[0,20 \pi]$.

Figure 9. $\kappa(s)=4.1+\sin (s)$ on the interval $[0,20 \pi]$.

