The elements of the Calculus of Variations.

We will assume the following.
Lemma 1. For any interval $[a, b]$ and any positive integer with $1 / n<(b-$ a)/2 there is a smooth (in this setting this means the first derivative exists and is continuous) function, $\phi_{a, b, n}(t)$ that looks like

That is $\phi_{a, b, n}(t)$ is zero at the endpoints $t=a$ and $t=b$ of the interval, has the value 1 for $a+1 / n \leq t \leq b-1 / n$ and $0 \leq \phi_{a, b, n}(t) \leq 1$.

If you don't want to assume this you can check that

$$
\phi_{a, b, n}(t)= \begin{cases}\sin ^{2}(n(t-a) \pi / 2), & a \leq t \leq a+1 / n \\ 1, & a+1 / n \leq t \leq b-1 / n \\ \sin ^{2}(n(b-t) \pi / 2), & b-1 / n \leq t \leq b\end{cases}
$$

does the trick.
Proposition 2. Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function with a continuous derivative on the interval $[a, b]$ such that for all functions, g, that are continuous functions with continuous derivatives on $[a, b]$ and with $g(a)=$ $g(b)=0$ that

$$
\int_{a}^{b} f(t) g(t) d t=0
$$

Then $f(t)=0$ for all $t \in[a, b]$.
Problem 1. Prove this. Hint: Let for any n the function $g_{n}(t)=\phi_{a, b, n}(t) f(t)$ is continuous with continuous derivative and $g_{n}(a)=g_{n}(b)=0$. Therefore

$$
\int_{a}^{b} f(t) g_{n}(t) d t=0
$$

What happens when we take the limit as $n \rightarrow \infty$ in this?

Now let $L(t, x, y)$ be a smooth (this time smooth means that the first and second partial derivatives exist and are continuous) functions of (t, x, y). We call such a function a Lagrangian Let $u:[a, b] \rightarrow \mathbf{R}$ be a function such that for all other functions v on $[a, b]$ that

$$
\begin{equation*}
u(a)=v(a), u(b)=v(b) \Longrightarrow \int_{a}^{b} L(t, u(t), \dot{u}(t)) d t \leq \int_{a}^{b} L(t, v(t), \dot{v}(t)) d t \tag{1}
\end{equation*}
$$

That is u minimizes $\int_{a}^{b} L(t, u(t), \dot{u}(t)) d t$ over all functions with the same boundary values as u.

Our goal is to show that this implies any such minimizer will satisfy a certain differential equation. Toward this end let $g:[a, b] \rightarrow \mathbf{R}$ be any smooth function with

$$
g(a)=g(b)=0 .
$$

Then for any real number ε the function

$$
u_{\varepsilon}(t)=u(t)+\varepsilon g(t)
$$

has $u_{\varepsilon}(a)=u(a)$ and $u_{\varepsilon}(b)=u(b)$. Therefore if we define a function of ε by

$$
f(\varepsilon)=\int_{a}^{b} L\left(t, u_{\varepsilon}(t), \dot{u}_{\varepsilon}(t)\right) d t
$$

and note that when $\varepsilon=0$ that $u_{0}=u$ we see that f has a minimum at $\varepsilon=0$. Therefore the derivative of f at $\varepsilon=0$ vanishes. That is

$$
\begin{align*}
f^{\prime}(0) & =\left.\frac{d}{d \varepsilon} \int_{a}^{b} L\left(t, u_{\varepsilon}(t), \dot{u}_{\varepsilon}(t)\right) d t\right|_{\varepsilon=0} \tag{2}\\
& =\left.\int_{a}^{b} \frac{d}{d \varepsilon} L\left(t, u_{\varepsilon}(t), \dot{u}_{\varepsilon}(t)\right)\right|_{\varepsilon=0} d t \\
& =0
\end{align*}
$$

where we can move the derivative under the integral by a theorem of advanced calculus.

Problem 2. Use the chain rule to show that

$$
\left.\frac{d}{d \varepsilon} L\left(t, u_{\varepsilon}(t), \dot{u}_{\varepsilon}(t)\right)\right|_{\varepsilon=0}=\frac{\partial L}{\partial x}(t, u(t), \dot{u}(t)) g(t)+\frac{\partial L}{\partial y}(t, u(t), \dot{u}(t)) \dot{g}(t) .
$$

(Here the notation is that $L=L(t, x, y)$ is a function of (t, x, y). Thus $\frac{\partial L}{\partial x}$ is the partial derivative with respect to the second variable and $\frac{\partial L}{\partial y}$ the derivative with respect to the third. It is also common to write these as $\frac{\partial L}{\partial u}$ and $\frac{\partial L}{\partial \dot{u}}$.)

Using this in the equation (2) we get

$$
\begin{align*}
0 & =\int_{a}^{b}\left(\frac{\partial L}{\partial x}(t, u(t), \dot{u}(t)) g(t)+\frac{\partial L}{\partial y}(t, u(t), \dot{u}(t)) \dot{g}(t)\right) d t \tag{3}\\
& =\int_{a}^{b} \frac{\partial L}{\partial x}(t, u(t), \dot{u}(t)) g(t) d t+\int_{a}^{b} \frac{\partial L}{\partial y}(t, u(t), \dot{u}(t)) \dot{g}(t) d t
\end{align*}
$$

Problem 3. Use integration by parts and that $g(a)=g(b)=0$ to show

$$
\int_{a}^{b} \frac{\partial L}{\partial y}(t, u(t), \dot{u}(t)) \dot{g}(t) d t=-\int_{a}^{b}\left(\frac{d}{d t} \frac{\partial L}{\partial y}(t, u(t), \dot{u}(t))\right) g(t) d t .
$$

Problem 4. Combine the last problem with equation (3) to conclude

$$
\int_{a}^{b}\left(\frac{d}{d t} \frac{\partial L}{\partial y}(t, u(t), \dot{u}(t))-\frac{\partial L}{\partial x}(t, u(t), \dot{u}(t))\right) g(t) d t=0
$$

for all smooth g on $[a, b]$ with $g(a)=g(b)=0$.
We can now state the main result.
Theorem 3. Let u be a smooth function that solves the minimization problem (1) above. Then u satisfies the Euler-Lagrange equation

$$
\frac{d}{d t} \frac{\partial L}{\partial y}(t, u(t), \dot{u}(t))-\frac{\partial L}{\partial x}(t, u(t), \dot{u}(t))=0 .
$$

Problem 5. Prove this.
Problem 6. Let $L(t, x, y)=\sqrt{1+y^{2}}$ and let the interval be $[a, b]=[0,1]$. Then for a function $u(t)$ on these interval

$$
\int_{0}^{1} L(t, u(t), \dot{u}(t)) d t=\int_{0}^{1} \sqrt{1+\dot{u}(t)^{2}} d t
$$

is just the length of the graph of u. Find the Euler-Lagrange equation for this integral and show that the solutions are straight lines.

Definition 4. The Lagrangian is time independent if and only if $L=$ $L(x, y)$ does not depend on t. If L is time independent define the energy to be

$$
E=y \frac{\partial L}{\partial y}-L
$$

Theorem 5 (Conservation of energy). Assume the Lagrangian, L, is time independent and that u is a solution to the Euler-Lagrange equation for L. Then the energy

$$
E(t)=\dot{u} \frac{\partial L}{\partial y}(\dot{u}(t), u(t))
$$

is constant.

Proof. It is enough to show that $E^{\prime}(t)=0$.

$$
\begin{aligned}
E^{\prime}(t)= & \frac{d}{d t}\left(\dot{u}(t) \frac{\partial L}{\partial y}(\dot{u}(t), u(t))-L(\dot{u}(t), u(t))\right) \\
= & \ddot{u}(t) \frac{\partial L}{\partial y}(\dot{u}(t), u(t))+\dot{u}(t) \frac{d}{d t} \frac{\partial L}{\partial y}(\dot{u}(t), u(t)) \\
& \quad-\frac{\partial L}{\partial y}(\dot{u}(t), u(t)) \ddot{u}(t)-\frac{\partial L}{\partial x}(\dot{u}(t), u(t)) \dot{u}(t) \\
= & \ddot{u}(t)\left(\frac{d}{d t} \frac{\partial L}{\partial y}(\dot{u}(t), u(t))-\frac{\partial L}{\partial x}(\dot{u}(t), u(t)) \dot{u}(t)\right) \\
=0 &
\end{aligned}
$$

where at the last step we used the Euler-Lagrange equation.
One reason law of conservation of energy is nice is that it reduces solving the second order Euler-Lagrange equation to solving a first order equation $E=$ constant. Let us look at an example. If $y=f(x)$ is revolved around the x-axis with $f(x)>0$ and $a \leq x \leq b$ is revolved around the x axis, then the area of the resulting surface is

$$
A=2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

So to find the surfaces of revolution of least area (a problem we will come back to) we wish to find the solutions to the Euler-Lagrange equations for the Lagrangian

$$
L(y, x)=x \sqrt{1+y^{2}} .
$$

If $u(t)$ is a solution to the Euler-Lagrange equation then (using what I hope is transparent notation) the energy is

$$
\begin{aligned}
E & =\dot{u} \frac{\partial}{\partial \dot{u}}\left(u \sqrt{1+\dot{u}^{2}}\right)-u \sqrt{1+\dot{u}^{2}} \\
& =\dot{u}\left(\frac{u \dot{u}}{\sqrt{1+\dot{u}}}\right)-u \sqrt{1+\dot{u}^{2}} \\
& =u\left(\frac{\dot{u}^{2}}{\sqrt{1+\dot{u}^{2}}}-\sqrt{1+\dot{u}^{2}}\right)
\end{aligned}
$$

Multiply by $\sqrt{1+\dot{u}^{2}}$

$$
E \sqrt{1+\dot{u}^{2}}=u\left(\dot{u}^{2}-1-\dot{u}^{2}\right)=-u^{2} .
$$

Squaring gives

$$
E^{2}\left(1+\dot{u}^{2}\right)=u^{2}
$$

and then solve for \dot{u}

$$
\dot{u}=\frac{\sqrt{u^{2}-E^{2}}}{E}
$$

Now we can just check directly that

$$
u(t)=E \cosh \left(\left(t-t_{0}\right) / E\right)
$$

is a solution. This is also the shape of a hanging chain.

