THE ELEMENTS OF THE CALCULUS OF VARIATIONS.

We will assume the following.

Lemma 1. For any interval [a,b] and any positive integer with 1/n < (b —
a)/2 there is a smooth (in this setting this means the first derivative exists
and is continuous) function, ¢qpn(t) that looks like

Height of function is 1

a a+1/n b-1/n b

That is ¢apn(t) is zero at the endpoints t = a and t = b of the interval,
has the value 1 fora+1/n <t <b—1/n and 0 < ¢gp,(t) < 1. O

If you don’t want to assume this you can check that
sin?(n(t —a)n/2), a<t<a+1/n;
Gapbn(t) =<1, a+1/n<t<b-—1/n;
sin?(n(b—t)m/2), b—1/n<t<b
does the trick.

Proposition 2. Let f: [a,b] — R be a continuous function with a contin-
uous derivative on the interval [a,b] such that for all functions, g, that are
continuous functions with continuous derivatives on [a,b] and with g(a) =

g(b) =0 that
b
| fseyde=o
Then f(t) =0 for all t € [a,b].

Problem 1. Prove this. Hint: Let for any n the function g,,(t) = ¢qpn(t) f(t)
is continuous with continuous derivative and g, (a) = g, (b) = 0. Therefore

b
/ £ ()gn(t) dt = 0.

What happens when we take the limit as n — oo in this?
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Now let L(t,z,y) be a smooth (this time smooth means that the first and
second partial derivatives exist and are continuous) functions of (¢, x,y). We
call such a function a Lagrangian Let u: [a,b] — R be a function such that
for all other functions v on [a, b] that

(1)
b b
u(a) = v(a), u(d) = v(b) = / L(t,u(t),u(t))dt</ L(t, o(t), 6()) dr.
a a
That is u minimizes fab L(t,u(t),u(t))dt over all functions with the same
boundary values as u.
Our goal is to show that this implies any such minimizer will satisfy a

certain differential equation. Toward this end let g: [a,b] — R be any
smooth function with

g(a) = g(b) = 0.
Then for any real number € the function
ue(t) = u(t) +eg(t)

has uc(a) = u(a) and u.(b) = u(b). Therefore if we define a function of € by

b
f(s):/ L(t,uc(t),u(t)) dt

and note that when ¢ = 0 that ug = v we see that f has a minimum at
€ = 0. Therefore the derivative of f at € = 0 vanishes. That is

d b
(2) F0) = [ L{tue(t) ie(t)) dt

b d .
_ / Lt ue(t), (1)
=0

e=0

dt
e=0

where we can move the derivative under the integral by a theorem of ad-
vanced calculus.

Problem 2. Use the chain rule to show that

L), 1:(0)]| = S0 d0)g(0) + (e u(D). )00

e=0

(Here the notation is that L = L(t,z,y) is a function of (¢,z,y). Thus

% is the partial derivative with respect to the second variable and % the

derivative with respect to the third. It is also common to write these as %

L
and g—u.)



Using this in the equation (2) we get

b
@ o= (‘3§<t,u<t>,a<t>>g<t>+g’zj(t,u(t),u(t))g(t)) dt

b b
= [ St aoigtorin+ [ S, ao)ateri

Problem 3. Use integration by parts and that g(a) = g(b) = 0 to show

b b

Problem 4. Combine the last problem with equation (3) to conclude

b/ d oL . oL .
[ (G 0,00 = G ) ) o) de =0
for all smooth ¢ on [a, b] with g(a) = g(b) = 0.
We can now state the main result.

Theorem 3. Let u be a smooth function that solves the minimization prob-
lem (1) above. Then u satisfies the Euler-Lagrange equation

d oL . oL .
aa—y(t,u(t),u(t)) — %(t,u(t),u(t)) =0.

Problem 5. Prove this.

Problem 6. Let L(t,z,y) = \/1+ y? and let the interval be [a,b] = [0, 1].
Then for a function u(t) on these interval

/1 Lt u(t), a(t)) dt = /l V1 +a(t)? dt
0 0

is just the length of the graph of . Find the Euler-Lagrange equation for
this integral and show that the solutions are straight lines.

Definition 4. The Lagrangian is time independent if and only if L =
L(z,y) does not depend on ¢. If L is time independent define the energy to

be

OL
E=y— L
y(?y O

Theorem 5 (Conservation of energy). Assume the Lagrangian, L, is time
independent and that u is a solution to the Euler-Lagrange equation for L.
Then the energy

E(t) = u‘éj(uu), u(t)

18 constant.
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Proof. Tt is enough to show that E'(t) = 0.

B0 = g (40 (0(0u(0) - L(ato). (1))

= () (0(0),u(t) + 0(6) 5 (a(0),u(t)

where at the last step we used the Euler-Lagrange equation. U

One reason law of conservation of energy is nice is that it reduces solving
the second order Euler-Lagrange equation to solving a first order equation
E = constant. Let us look at an example. If y = f(x) is revolved around
the z-axis with f(x) > 0 and a < z < b is revolved around the z axis, then
the area of the resulting surface is

b
A:27T/ f@)\/1+ f'(x)?dx

So to find the surfaces of revolution of least area (a problem we will come
back to) we wish to find the solutions to the Euler-Lagrange equations for

the Lagrangian
L(y,z) = zv/1 + 2.

If u(t) is a solution to the Euler-Lagrange equation then (using what I hope
is transparent notation) the energy is

p—il (u\/1+u2) — w1+ a2

o
u —
. 1 -2

)
—u (“ V1 +u2>
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Multiply by V1 + u2

EV1+a2=u(i®—1-4%) = —u’.

Squaring gives
E*(1+ %) = u?
and then solve for u
we — 2
E

4=
Now we can just check directly that
u(t) = Ecosh((t — to)/F)



is a solution. This is also the shape of a hanging chain.



