
Mathematics 551 Homework, January 17, 2024

Here is a summary of part of the plot to date. If c : [a, b] → R2 is a unit
speed curve, that is ‖c′(s)‖ = 1 for all s, the unit tangent is

t(s) = c′(s) =

(
dx

ds
,
dy

ds

)
where c has the coordinate repersentation

c(s) = (x(s), y(s)).

Then the unit normal is

n(s) =

(
−dy
ds
,
dx

ds

)
.

Taking the derivative of the equation

t · t = 1

with respect to s gives

2t · dt
ds

= 0.

Therefore
dt

ds
is a scalar multiple of n. That is there is a scaler function κ(s)

such that
dt

ds
= κ(s)n(s).

This function is the curvature of c.
We can give a somewhat more geometric description of κ. Let θ(s) be the

angle t(s) makes with some fixed vector. To be concrete let it be the angle
that t(s) makes with the positive x-axis.

θ(s)

c(s)

t(s)

Then the unit tangent and normal are

t(s) = (cos(θ(s)), sin(θ(s))), n(s) = (− sin(θ(s)), cos(θ(s)))

Then we can use the chain rule to compute

dt

ds
=
dθ

ds
(− sin(θ(s)), cos(θ(s))) =

dθ

ds
n(s).
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Comparing our two formulas for the derivative
dt

ds
shows that

κ =
dθ

ds
.

Therefore the curvature is the rate of change of the direction of motion (as
measured by the angle) with respect to arc length.

We have computed the derivatives of c and t. We now want to compute
the derivative of n. In the current setting probably the most natural way is
to use that

n(s) = (− sin(θ(s)), cos(θ(s)))

and taking the derivative gives

dn

ds
=
dθ

ds
(− cos(θ(s)),− sin(θ(s))) = −κ(s)t(s).

When we look at curves in R3 we will need a different method to compute
the derivative of the normal. Here is the idea. The vectors t and n are a
basis for R2. Thus any other vector is a linear combination of these two:

v = at + bn.

And we can give formulas for a and b.

Proposition 1. If v = at + bn, then

a = v · t, b = v · n.

Problem 1. Prove this. Hint: We know (and you can assume) that the
vectors t and n satisfy

t · t = 1, t · n = 0, n · n = 1.

Now take v = at + bn and take the dot product of both sides with t to see
that a = vṫ. Then take the dot product of both sides with n to get the
formula for b. �

Using this we have

dn

ds
=

(
dn

ds
· t
)
t +

(
dn

ds
· n
)
n

To take the easiest of the terms first we take the derivative of n · n = 1 to
get

2
dn

ds
· n = 0.

For the other term take the derivative of

n · t = 0

to get
dn

ds
· t + n · dt

ds
= 0
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which we rewrite as
dn

ds
· t = −n · dt

ds
.

But we know
dt

ds
= κ(s)n. Using this in the last displayed formula gives

dn

ds
· t = −n · κ(s)n = −κ(s).

Putting these formulas together gives

dn

ds
= −κ(s)t(s).

We summarize these calculations in the basic result:

Theorem 2 (Planar Frenet–Serret Formulas). For a unit speed curve c : [a, b]→
R2 the formuals

dc

ds
= t

dt

ds
= κ(s)n

dn

ds
= −κ(s)t

hold where κ is the curvature of the curve. �
We now see that κ tells us about the curve.

Proposition 3. Let c : [a, b] → R2 be a unit speed curve with κ ≡ 0. Then
c is a part of a straight line.

Problem 2. Prove this. Hint: From the Frenet-Serret we have
dt

ds
= κn = 0.

Thus the derivative of t is identically zero and therefore t is constant, say

t = t0

for a constant vector. Using anther of the Frenet-Serret formulas we have

dc

ds
= t0.

Integrate this to get that c(s) = st0 + c0 for some constant vector c0. �

Since many curves do not come to use with a unit speed parameterization,
and finding explicit unit speed parameterizations is hard work, we would like
a formulas for curvature in terms of arbitrary parameterizations. Using the
wedge product, v∧w, of vector makes these formulas easier to derive. Recall
this is just a two dimensional version of the cross product: if v = (v1, v1)
and w = (w1, w2) then

v ∧w =

∣∣∣∣v1 v2
w1 w2

∣∣∣∣ = v1w2 − v2w1.
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The properties of this product we will use are

v ∧ v = 0

w ∧ v = −v ∧w

(av1 + bv2) ∧w = av1 ∧w + bv2 ∧w.

where v,v1,v2, and w are vectors and a and b are scalars. And also impor-
tant for use are that for the unit tangent and normals to a curve

t ∧ t = n ∧ n = 0

t ∧ n = −n ∧ t = 1.

Problem 3. Verify the formula above for t∧n. Hint: There are many ways
to do this. In terms of what we have done so far, maybe the easiest to to
use that t = (cos(θ), sin(θ)) and n = (− sin(θ), cos(θ)). �

So let c : [a, b] → R2 be a curve with c′(t) 6= 0 for all t, but which is not
necessary unit speed. Let s be an arc length parameter along c. Let

v = ‖c′(t)‖ =

∥∥∥∥dcdt
∥∥∥∥

be the speed of c. By the chain rule

dc

dt
=
ds

dt

dc

ds
=
ds

dt
t.

As t is a unit vector this implies

ds

dt
=

∥∥∥∥dcdt
∥∥∥∥ = v.

So the velocity vector of c is

dc

dt
= vt.

The acceleration vector is

d2c

dt2
=

d

dt

dc

dt

=
d

dt
(vt)

=
dv

dt
t + v

dt

dt

=
dv

dt
t + v

ds

dt

dt

ds

=
dv

dt
t + vvκn

=
dv

dt
t + v2κn.
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We now have

dc

dt
∧ d

2c

dt2
= (vt) ∧

(
dv

dt
t + v2κn

)
= v3κ(s) (using t ∧ t = 0 and t ∧ n = 1).

This gives a formula for κ

κ =
1

v3

(
dc

dt
∧ d

2c

dt2

)
.

If c(t) has the coordinate representation

c(t) = (x(t), y(t))

then
dc

dt
= (x′(t), y′(t)),

d2c

dt2
= (x′′(t), y′′(t))

and therefore the speed is

v =

∥∥∥∥dcdt
∥∥∥∥ =

(
x′(t)2 + y′(t)2

)1/2
and

dc

dt
∧ d

2c

dt2
=

∣∣∣∣x′(t) y′(t)
x′′(t) y′′(t)

∣∣∣∣ = x′(t)y′′(t)− x′′(t)y′(t).

This gives

Theorem 4. For a C2 curve c : [a, b] → R2 with c′(t) 6= 0 for all t, the
curvature is given by

κ =
x′(t)y′′(t)− x′′(t)y′(t)

(x′(t)2 + y′(t)2)3/2 �

We can now do a few more examples. A circle centered at the point
(x0, y0) with radius r and transversed in the positive direction (that is coun-
terclockwise) is parameterized by

c(t) = (x0 + r cos(t), y0 + r sin(t)).

Problem 4. Show this circle has constant curvature 1/r. Draw a picture
showing that it is curving to the left (which is why the curvature is constant).

�.

Now let’s go around this circle in the opposite direction:

c(t) = (x0 + r cos(t), y0 − r sin(t)).

Problem 5. Show this circle has constant curvature −1/r and draw a pic-
ture showing that it is curving to the right. �



6

Here is anther way to derive the curvature formula which is probably more
like what you did in your calculus class. We have seen that one formula for
curvature is

κ =
dθ

ds
.

We do our usual chain rule trick:

κ =
dt

ds

dθ

dt
=

1

v

dθ

dt
.

If c = (x(t), y(t)) then the tangent vector is c′(t) = (x′(t), y′(t)) and if θ is
the angle this vector makes with the positive x-axis we have

tan(θ) =
y′(t)

x′(t)

that is

θ = arctan

(
y′(t)

x′(t)

)
.

Problem 6. Use the formula for the derivative of the arc tangent to expand

κ =
1

v

dθ

dt
=

1

v

d

dt
arctan

(
y′(t)

x′(t)

)
and show that the result is

κ =
x′(t)y′′(t)− x′′(t)y′(t)

(x′(t)2 + y′(t)2)3/2

as before. �

Problem 7. Let f : [a, b]→ R2 be a function with second derivative contin-
uous. Then (̧t) = (t, f(t)) parameterizes the graph of f . Use Theorem 4 to
show the curvature is

κ(t) =
f ′′(t)

(1 + f ′(t)2)3/2
.

Usually in this case we will just use t = x as the parameter and write

κ(x) =
f ′′(x)

(1 + f ′(x)2)3/2

or just

κ =
y′′

(1 + (y′)2)3/2 �

Problem 8. To continue the previous problem show the unit tangent and
normal to the graph of y = f(x) are

t(x) =
1√

1 + f ′(x)2
(1, f ′(x)), n(x) =

1√
1 + f ′(x)2

(−f ′(x), 1)
�

We have seen in class that if the curvature is identically zero, the curve
is part of a straight line. We would also like to know what happens if the
curvature is an nonzero constant.
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Theorem 5. Let c : [a, b] → R2 be a unit speed curve that has constant
curvature κ = κ0 6= 0. Then c is on a circle of radius r = 1/|κ0|.

Problem 9. Prove this along the following lines. Based on examples above
it is reasonable to guess that if c moves on a circle, that the center of the
circle is

P(s) = c(s) +
1

κ
n.

Use the Frenet-Serret formulas to show

dP

ds
= 0

and therefore P(s) = P0 is constant. Then show

‖c(s)−P0‖ =
1

|κ0|
to complete the proof. �

Now it is time to do some examples.

Problem 10. One theory about why moths fly into a bright light is that
that are using the moon to navigate by keeping it at a angle constant to their
direction of motion. This would keep them moving in a constant direction.
But if there is a light that is brighter than the moon they mistake this for
the moon and it the angle they are using is less that π/2 this leads to them
spiraling into the light. The figure shows the case where the angle, α, is just
a little less than 90◦ = π/2 and the light is at the origin.

α

If this were a differential equations class the problem would be given the
angle, to find the curve. But we will start with a curve and show that it
works. Let a > 0 and let

c(t) = (e−at cos(t), e−at sin(t)) = e−at(cos(t), sin(t)).

(a) Show that for this curve the angle, α, between −c(t) and c′(t) satisfies

cos(α) =
a√

1 + a2

and therefore is constant.
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(b) For this curve c(0) = (1, 0) and on the interval [0,∞) the spiral winds
around the origin infinitely many times. Despite this the length of the
curve is finite. Find the length.

(c) Compute the curvature of this curve. What happens to the curvature
as t→∞? �

Problem 11. The ellipse with equation

x2

a2
+
y2

b2
= 1

has the parameterization

c(t) = (a cos(t), b sin(t)).

This is not a unit speed parameterization. Use the formulas above to com-
pute the unit tangent t(t), the unit normal, n(t), and the curvature κ(t). �


