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1. Calculations in polar coordinates.

First a trick or two to that make some calculations easier. Let

e1(θ) = (cos(θ), sin(θ))

e2(θ) = (− sin(θ), cos(θ))

These vectors are both unit vectors (that is have ∥ej∥ = 1, and are orthog-
onal (i.e. e1 · e2 = 0). Also e1 ∧ e2 = 1. Also useful is that their derivatives
are

e′1 = e2

e′2 = −e1.

Often writing curves in terms of this basis simplifies calculations it avoids
a good deal (but not all) algebra and having to simplify expressions involving
trigonometric functions. To be a little more explicit about how this works
if we write two vectors v and w in the basis e1 and e2 as

v = v1e1 + v2e2

w = w1e1 + w2e2

Then the following hold:

∥v∥2 = v21 + v22

∥w∥2 = w2
1 + w2

2

v ·w = v1w1 + v2w2

v ∧w =

∣∣∣∣v1 v2
w1 w2

∣∣∣∣ = v1w2 − v2w1.

Note if you wrote out v in the standard basis ((1, 0) and (0, 1)) it is v =
(v1 cos(θ)−v2 sin(θ), v1 sin(θ)+v2 cos(θ)) and computing directly that ∥v∥2 =
v21 + v22 involves a fair amount of algebra and using that sin2+cos2 = 1 at
least twice. Likewise for the other formulas.

To look at an example of this consider a curve whose equation in polar
coordinates is

r = ρ(θ)
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Using that the x and y of rectangular coordinates are related to the r and
θ of polar coordinates by the x and y of rectangular coordinates are related
by

x = r cos(θ)(1)

y = r sin(θ)(2)

we have that a parameterization of the curve in rectangular coordinates is

c(θ) = (ρ(θ) cos(θ), ρ(θ) sin(θ)).

This can be written as more compactly as

(3) c = ρe1

(to keep the notation shorter, and easier to read, we are suppressing θ, but
keep in mind that ρ = ρ(θ) and e1 = e1(θ) depend on θ.)

Problem 1 (Arclength in polar coordinates). Verify the following: With c
given by Equation (3) show that the velocity vector is

v = c′ = ρ′e1 + ρe2.

and therefore the speed is

v = ∥c′∥ =
√
ρ2 + (ρ′)2.

Therefore the part of the curve with α ≤ θ ≤ β has length

L =

∫ β

α

√
ρ(θ)2 + ρ′(θ)2 dθ. □

Problem 2. This problem is mostly a bit of review of calculus. Let a > 0
and consider the curve with polar equation

r = 2a cos(θ).

(a) Show that this is the circle with rectangular equation (x−a)2+y2 = a2

and thus this circle has center (a, 0) and radius a.
(b) Show that as θ moving from −π/2 to π/2 corresponds to moving

around the circle once. (Proof by picture is fine for this.)
(c) Use these facts and the previous problem to show that the length of

a circle of radius a is 2πa. (I admit this is not the best way to see
this, but it is a good test case for seeing we have the correct formula
for the length.) □

Problem 3 (Curvature in polar coordinates). This continues Problem 1.
Show that

c′′ = (ρ′′ − ρ)e1 + 2ρ′e2

and therefore
c′ ∧ c′′ = ρ2 + 2(ρ′)2 − ρρ′′.

Recalling that curvature is given by

κ =
c′ ∧ c′′

v3
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put the pieces together to show that in the case at hand

κ =
ρ2 + 2(ρ′)2 − ρρ′′

(ρ2 + (ρ′)2)3/2
. □

Problem 4. The curve with polar equation

r = 1− 2 cos(θ)

has the following graph:

Compute the curvature, κ(θ), of this curve and show that it has a maximum
when θ = 0, a minimum when θ = π, and κ has no other local maximums
or minimums. □

2. Implicitly defined curves.

Often curves are given by equations such as

x2 + y2 = 1

or
x2

a2
− y2

b
= 1.

It is nice to be able find the curvature of such curves without having to find
a parameterization.

Let U be an open subset of R2 and f : U → R be a function with contin-
uous first and second partial derivatives. Let c(x) = (x(t), y(t)). Then the
chain rule is

d

dt
f(c(t)) = ∇f(c(t)) · c′(t).

Written out in coordinates this is

d

dt
f(x(t), y(t)) =

∂f

∂x
(x(t), y(t))

dx

dt
+

∂f

∂y
(x(t), y(t))

dy

dt
.

Better yet is to use subscripts for partial derivative (i.e. fx = ∂f
∂x , fxy = ∂2f

∂x∂y

etc.) and write this as
dt

dt
f = fxx

′ + fyy
′.
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If we apply this to fx(x(t), y(t)) we get

d

dt
fx = fxxx

′ + fxyy
′.

Problem 5. Put these pieces together to get

(4)
d2

dt2
f = fxx(x

′)2 + 2fxyx
′y′ + fyy(y

′)2 + fxx
′′ + fyy

′′.

where fx and the other partial derivative are evaluated at (x(t), y(t))

Now assume that c(s) = (x(s), y(s)) is a unit speed curve and

f(x(s), y(s)) = C

where C is a constant. Taking the derivative of this gives

fxx
′ + fyy

′ = ∇f(c(s)) · c′(t) = 0.

That is the tangent vector to the curve, c′(s), is orthogonal to the gradient
∇f = (fx, fy). We assume that we are moving so that the unit tangent to
the curve is

(x′(s), y′(s)) = c′(s) = t(s) =
1√

f2
x + f2

y

(−fy, fx).

Thus

x′(s) =
fx√

f2
x + f2

y

y′(s) =
fy√

f2
x + f2

y

Then the unit normal to the curve is

n(s) =
1√

f2
x + f2

y

(−fx,−fy).

By the Frenet formulas we have

(x′′(s), y′′(s)) = c′′(s) = t′(s) = κ(s)n(s) =
1√

f2
x + f2

y

(−fx,−fy).

and therefore

x′′ =
−κfx√
f2
x + f2

y

y′′ =
−κfy√
f2
x + f2

y
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Problem 6. Use the these formulas in equation (4) to show that the cur-
vature of c is

κ =
fyyf

2
x − 2fxyfxfy + fxxf

2
y

(f2
x + f2

y )
3
2

. □

3. Evolutes and the Tait-Kneser Theorem.

Let c : [a, b] → R2 be a C3 curve with curvature κ everywhere positive.
Then the radius of curvature for the curve at c(s) is

ρ(s) =
1

κ(s)
.

The point

E(s) = c(s) + ρ(s)n(s)

is the center of curvature of c at c(s) and the osculating circle at
c(s) is the circle with center E(s) and radius ρ(s). This is the circle that is
tangent to c at c(s) and has the same curvature as the curve and therefore is
the circle that “best fits” c at c(s). The curve E : [a, b] → R2 is the evolute
of c.

Problem 7. Use the Frenet formulas to show that

E′(s) = ρ′(s)n(s).

Then use this to show that the unit normal nE(s) to E is

tE(s) =

{
n(s), ρ′(s) > 0;

−n(s), ρ′(s) < 0.

Use this to show that nE flips direction by π radians at any point there ρ
has a local maximum or minimum. That is at the vertices of c. □

Here is a picture of the ellipse

x2

22
+ y2 = 1

together with its evolute.
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For a more exotic example, or at least one with more vertices, here is the
graph of the curve

c(t) = ((2 + .5 cos(2 ∗ t)) cos(t), 2 sin(t)) 0 ≤ t ≤ 2π.

together with its evolute.

As one last example recall that curve with polar equation r = 1+2 cos(θ)
was our example of a closed, but not simple, curve that only has two vertices.
Thus its evolute should only have two cusps. Here is the picture showing
this is the case:

Problem 8. Let c : [a, b] → R2 be a curve where κ > 0 and is monotone
(that is either increasing or decreasing) on the interval. Show that the length
of the evolute E is

Length(E) = |ρ(b)− ρ(a)|.
Hint: The arclength formula is

Length(E) =

∫ b

a
∥E′(s)∥ ds.

Now use that E′(s) = ρ′(s)n and that since κ, and therefore also ρ, is
monotone that ρ′ is either always positive or always negative. □

Problem 9. With the same hypothesis as the previous problem, show

∥E(b)−E(a)∥ < |ρ(b)− ρ(a)|.
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Hint: For a curve that is not a line segment, its length is greater than the
distance between its endpoints. Or put more succinctly, the shortest path
between two points is a straight line. □

Problem 10. Let P1 and P2 be points in the plane, R1, R2 positive real
numbers, and let Cj be the circle with center Pj and radius Rj . Show that
if ∥P1 −P2∥ < |R1 −R2| then one of the circles C1 or C2 is contained in the
other one. Hint: Proof by picture is fine, and even preferred. □

Theorem 1 (Tait-Kneser Theorem1). Let c : [a, b] → R3 be a C3 unit speed
curve that has positive curvature. Also assume that κ is monotone. Then
the osculating circles of the curve are nested. That if for any pair of them,
one is contained inside the other.

Problem 11. Prove this. Hint: Follow the outline of what we did in class.
□

The following figure shows the curve c : [0, 4π] → R2 given by

c(t) = (e−.15t cos(t), e−.15 sin(t))

(which has polar equation r = e−.15θ) which has curvature

κ(t) =
20e.15t√

409

which is increasing. Three of the osculating circles of the curve are shown.

The Tait-Kneser Theorem has some nice consequences. Note that a curve
with positive curvature can cross itself many times.

Problem 12. Draw a curve with positive curvature that crosses itself four
times. □

Problem 13. Show that a curve c : [a, b] → R2 that has positive increasing
curvature is embedded (the term embedded in this context just means that
the curve does not cross itself). □

1This result was orginially proven by Peter Tait in a paper published in 1896. Adolf
Kneser rediscovered it and published a proof in 1912.
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