Mathematics 551 Homework.

Contents

1. Calculations in polar coordinates. 1
2. Implicitly defined curves. 3
3. Evolutes and the Tait-Kneser Theorem. 5

1. Calculations in polar coordinates

First a trick or two to that make some calculations easier. Let

$$
\begin{aligned}
& \mathbf{e}_{1}(\theta)=(\cos (\theta), \sin (\theta)) \\
& \mathbf{e}_{2}(\theta)=(-\sin (\theta), \cos (\theta))
\end{aligned}
$$

These vectors are both unit vectors (that is have $\left\|\mathbf{e}_{j}\right\|=1$, and are orthogonal (i.e. $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$). Also $\mathbf{e}_{1} \wedge \mathbf{e}_{2}=1$. Also useful is that their derivatives are

$$
\begin{aligned}
& \mathbf{e}_{1}^{\prime}=\mathbf{e}_{2} \\
& \mathbf{e}_{2}^{\prime}=-\mathbf{e}_{1} .
\end{aligned}
$$

Often writing curves in terms of this basis simplifies calculations it avoids a good deal (but not all) algebra and having to simplify expressions involving trigonometric functions. To be a little more explicit about how this works if we write two vectors \mathbf{v} and \mathbf{w} in the basis \mathbf{e}_{1} and \mathbf{e}_{2} as

$$
\begin{aligned}
\mathbf{v} & =v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2} \\
\mathbf{w} & =w_{1} \mathbf{e}_{1}+w_{2} \mathbf{e}_{2}
\end{aligned}
$$

Then the following hold:

$$
\begin{aligned}
\|\mathbf{v}\|^{2} & =v_{1}^{2}+v_{2}^{2} \\
\|\mathbf{w}\|^{2} & =w_{1}^{2}+w_{2}^{2} \\
\mathbf{v} \cdot \mathbf{w} & =v_{1} w_{1}+v_{2} w_{2} \\
\mathbf{v} \wedge \mathbf{w} & =\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right|=v_{1} w_{2}-v_{2} w_{1} .
\end{aligned}
$$

Note if you wrote out \mathbf{v} in the standard basis $((1,0)$ and $(0,1))$ it is $\mathbf{v}=$ $\left(v_{1} \cos (\theta)-v_{2} \sin (\theta), v_{1} \sin (\theta)+v_{2} \cos (\theta)\right)$ and computing directly that $\|\mathbf{v}\|^{2}=$ $v_{1}^{2}+v_{2}^{2}$ involves a fair amount of algebra and using that $\sin ^{2}+\cos ^{2}=1$ at least twice. Likewise for the other formulas.

To look at an example of this consider a curve whose equation in polar coordinates is

$$
r=\rho(\theta)
$$

Using that the x and y of rectangular coordinates are related to the r and θ of polar coordinates by the x and y of rectangular coordinates are related by

$$
\begin{align*}
& x=r \cos (\theta) \tag{1}\\
& y=r \sin (\theta) \tag{2}
\end{align*}
$$

we have that a parameterization of the curve in rectangular coordinates is

$$
\mathbf{c}(\theta)=(\rho(\theta) \cos (\theta), \rho(\theta) \sin (\theta)) .
$$

This can be written as more compactly as

$$
\begin{equation*}
\mathbf{c}=\rho \mathbf{e}_{1} \tag{3}
\end{equation*}
$$

(to keep the notation shorter, and easier to read, we are suppressing θ, but keep in mind that $\rho=\rho(\theta)$ and $\mathbf{e}_{1}=\mathbf{e}_{1}(\theta)$ depend on θ.)

Problem 1 (Arclength in polar coordinates). Verify the following: With c given by Equation (3) show that the velocity vector is

$$
\mathbf{v}=\mathbf{c}^{\prime}=\rho^{\prime} \mathbf{e}_{1}+\rho \mathbf{e}_{2} .
$$

and therefore the speed is

$$
v=\left\|\mathbf{c}^{\prime}\right\|=\sqrt{\rho^{2}+\left(\rho^{\prime}\right)^{2}} .
$$

Therefore the part of the curve with $\alpha \leq \theta \leq \beta$ has length

$$
L=\int_{\alpha}^{\beta} \sqrt{\rho(\theta)^{2}+\rho^{\prime}(\theta)^{2}} d \theta
$$

Problem 2. This problem is mostly a bit of review of calculus. Let $a>0$ and consider the curve with polar equation

$$
r=2 a \cos (\theta) .
$$

(a) Show that this is the circle with rectangular equation $(x-a)^{2}+y^{2}=a^{2}$ and thus this circle has center $(a, 0)$ and radius a.
(b) Show that as θ moving from $-\pi / 2$ to $\pi / 2$ corresponds to moving around the circle once. (Proof by picture is fine for this.)
(c) Use these facts and the previous problem to show that the length of a circle of radius a is $2 \pi a$. (I admit this is not the best way to see this, but it is a good test case for seeing we have the correct formula for the length.)
Problem 3 (Curvature in polar coordinates). This continues Problem 1. Show that

$$
\mathbf{c}^{\prime \prime}=\left(\rho^{\prime \prime}-\rho\right) \mathbf{e}_{1}+2 \rho^{\prime} \mathbf{e}_{2}
$$

and therefore

$$
\mathbf{c}^{\prime} \wedge \mathbf{c}^{\prime \prime}=\rho^{2}+2\left(\rho^{\prime}\right)^{2}-\rho \rho^{\prime \prime}
$$

Recalling that curvature is given by

$$
\kappa=\frac{\mathbf{c}^{\prime} \wedge \mathbf{c}^{\prime \prime}}{v^{3}}
$$

put the pieces together to show that in the case at hand

$$
\kappa=\frac{\rho^{2}+2\left(\rho^{\prime}\right)^{2}-\rho \rho^{\prime \prime}}{\left(\rho^{2}+\left(\rho^{\prime}\right)^{2}\right)^{3 / 2}}
$$

Problem 4. The curve with polar equation

$$
r=1-2 \cos (\theta)
$$

has the following graph:

Compute the curvature, $\kappa(\theta)$, of this curve and show that it has a maximum when $\theta=0$, a minimum when $\theta=\pi$, and κ has no other local maximums or minimums.

2. IMPLICITLY DEFINED CURVES.

Often curves are given by equations such as

$$
x^{2}+y^{2}=1
$$

or

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b}=1
$$

It is nice to be able find the curvature of such curves without having to find a parameterization.

Let U be an open subset of \mathbb{R}^{2} and $f: U \rightarrow \mathbb{R}$ be a function with continuous first and second partial derivatives. Let $\mathbf{c}(x)=(x(t), y(t))$. Then the chain rule is

$$
\frac{d}{d t} f(\mathbf{c}(t))=\nabla f(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t)
$$

Written out in coordinates this is

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x}(x(t), y(t)) \frac{d x}{d t}+\frac{\partial f}{\partial y}(x(t), y(t)) \frac{d y}{d t}
$$

Better yet is to use subscripts for partial derivative (i.e. $f_{x}=\frac{\partial f}{\partial x}, f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}$ etc.) and write this as

$$
\frac{d t}{d t} f=f_{x} x^{\prime}+f_{y} y^{\prime}
$$

If we apply this to $f_{x}(x(t), y(t))$ we get

$$
\frac{d}{d t} f_{x}=f_{x x} x^{\prime}+f_{x y} y^{\prime}
$$

Problem 5. Put these pieces together to get

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} f=f_{x x}\left(x^{\prime}\right)^{2}+2 f_{x y} x^{\prime} y^{\prime}+f_{y y}\left(y^{\prime}\right)^{2}+f_{x} x^{\prime \prime}+f_{y} y^{\prime \prime} \tag{4}
\end{equation*}
$$

where f_{x} and the other partial derivative are evaluated at $(x(t), y(t))$
Now assume that $\mathbf{c}(s)=(x(s), y(s))$ is a unit speed curve and

$$
f(x(s), y(s))=C
$$

where C is a constant. Taking the derivative of this gives

$$
f_{x} x^{\prime}+f_{y} y^{\prime}=\nabla f(\mathbf{c}(s)) \cdot \mathbf{c}^{\prime}(t)=0 .
$$

That is the tangent vector to the curve, $\mathbf{c}^{\prime}(s)$, is orthogonal to the gradient $\nabla f=\left(f_{x}, f_{y}\right)$. We assume that we are moving so that the unit tangent to the curve is

$$
\left(x^{\prime}(s), y^{\prime}(s)\right)=\mathbf{c}^{\prime}(s)=\mathbf{t}(s)=\frac{1}{\sqrt{f_{x}^{2}+f_{y}^{2}}}\left(-f_{y}, f_{x}\right)
$$

Thus

$$
\begin{aligned}
x^{\prime}(s) & =\frac{f_{x}}{\sqrt{f_{x}^{2}+f_{y}^{2}}} \\
y^{\prime}(s) & =\frac{f_{y}}{\sqrt{f_{x}^{2}+f_{y}^{2}}}
\end{aligned}
$$

Then the unit normal to the curve is

$$
\mathbf{n}(s)=\frac{1}{\sqrt{f_{x}^{2}+f_{y}^{2}}}\left(-f_{x},-f_{y}\right) .
$$

By the Frenet formulas we have

$$
\left(x^{\prime \prime}(s), y^{\prime \prime}(s)\right)=\mathbf{c}^{\prime \prime}(s)=\mathbf{t}^{\prime}(s)=\kappa(s) \mathbf{n}(s)=\frac{1}{\sqrt{f_{x}^{2}+f_{y}^{2}}}\left(-f_{x},-f_{y}\right)
$$

and therefore

$$
\begin{aligned}
x^{\prime \prime} & =\frac{-\kappa f_{x}}{\sqrt{f_{x}^{2}+f_{y}^{2}}} \\
y^{\prime \prime} & =\frac{-\kappa f_{y}}{\sqrt{f_{x}^{2}+f_{y}^{2}}}
\end{aligned}
$$

Problem 6. Use the these formulas in equation (4) to show that the curvature of \mathbf{c} is

$$
\kappa=\frac{f_{y y} f_{x}^{2}-2 f_{x y} f_{x} f_{y}+f_{x x} f_{y}^{2}}{\left(f_{x}^{2}+f_{y}^{2}\right)^{\frac{3}{2}}} .
$$

3. Evolutes and the Tait-Kneser Theorem.

Let $c:[a, b] \rightarrow \mathbb{R}^{2}$ be a C^{3} curve with curvature κ everywhere positive. Then the radius of curvature for the curve at $\mathbf{c}(s)$ is

$$
\rho(s)=\frac{1}{\kappa(s)} .
$$

The point

$$
\mathbf{E}(s)=\mathbf{c}(s)+\rho(s) \mathbf{n}(s)
$$

is the center of curvature of \mathbf{c} at $\mathbf{c}(s)$ and the osculating circle at $\mathbf{c}(s)$ is the circle with center $\mathbf{E}(s)$ and radius $\rho(s)$. This is the circle that is tangent to \mathbf{c} at $\mathbf{c}(s)$ and has the same curvature as the curve and therefore is the circle that "best fits" \mathbf{c} at $\mathbf{c}(s)$. The curve $\mathbf{E}:[a, b] \rightarrow \mathbb{R}^{2}$ is the evolute of \mathbf{c}.

Problem 7. Use the Frenet formulas to show that

$$
\mathbf{E}^{\prime}(s)=\rho^{\prime}(s) \mathbf{n}(s)
$$

Then use this to show that the unit normal $\mathbf{n}_{E}(s)$ to \mathbf{E} is

$$
\mathbf{t}_{E}(s)= \begin{cases}\mathbf{n}(s), & \rho^{\prime}(s)>0 \\ -\mathbf{n}(s), & \rho^{\prime}(s)<0\end{cases}
$$

Use this to show that \mathbf{n}_{E} flips direction by π radians at any point there ρ has a local maximum or minimum. That is at the vertices of \mathbf{c}.

Here is a picture of the ellipse

$$
\frac{x^{2}}{2^{2}}+y^{2}=1
$$

together with its evolute.

For a more exotic example, or at least one with more vertices, here is the graph of the curve

$$
\mathbf{c}(t)=((2+.5 \cos (2 * t)) \cos (t), 2 \sin (t)) \quad 0 \leq t \leq 2 \pi .
$$

together with its evolute.

As one last example recall that curve with polar equation $r=1+2 \cos (\theta)$ was our example of a closed, but not simple, curve that only has two vertices. Thus its evolute should only have two cusps. Here is the picture showing this is the case:

Problem 8. Let c: $[a, b] \rightarrow \mathbb{R}^{2}$ be a curve where $\kappa>0$ and is monotone (that is either increasing or decreasing) on the interval. Show that the length of the evolute \mathbf{E} is

$$
\operatorname{Length}(\mathbf{E})=|\rho(b)-\rho(a)| .
$$

Hint: The arclength formula is

$$
\operatorname{Length}(\mathbf{E})=\int_{a}^{b}\left\|\mathbf{E}^{\prime}(s)\right\| d s
$$

Now use that $\mathbf{E}^{\prime}(s)=\rho^{\prime}(s) \mathbf{n}$ and that since κ, and therefore also ρ, is monotone that ρ^{\prime} is either always positive or always negative.

Problem 9. With the same hypothesis as the previous problem, show

$$
\|\mathbf{E}(b)-\mathbf{E}(a)\|<|\rho(b)-\rho(a)| .
$$

Hint: For a curve that is not a line segment, its length is greater than the distance between its endpoints. Or put more succinctly, the shortest path between two points is a straight line.

Problem 10. Let \mathbf{P}_{1} and \mathbf{P}_{2} be points in the plane, R_{1}, R_{2} positive real numbers, and let \mathcal{C}_{j} be the circle with center \mathbf{P}_{j} and radius R_{j}. Show that if $\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|<\left|R_{1}-R_{2}\right|$ then one of the circles \mathcal{C}_{1} or \mathcal{C}_{2} is contained in the other one. Hint: Proof by picture is fine, and even preferred.
Theorem 1 (Tait-Kneser Theorem ${ }^{1}$). Let $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{3}$ be a C^{3} unit speed curve that has positive curvature. Also assume that κ is monotone. Then the osculating circles of the curve are nested. That if for any pair of them, one is contained inside the other.

Problem 11. Prove this. Hint: Follow the outline of what we did in class.

The following figure shows the curve $\mathbf{c}:[0,4 \pi] \rightarrow \mathbb{R}^{2}$ given by

$$
\mathbf{c}(t)=\left(e^{-.15 t} \cos (t), e^{-.15} \sin (t)\right)
$$

(which has polar equation $r=e^{-.15 \theta}$) which has curvature

$$
\kappa(t)=\frac{20 e^{.15 t}}{\sqrt{409}}
$$

which is increasing. Three of the osculating circles of the curve are shown.

The Tait-Kneser Theorem has some nice consequences. Note that a curve with positive curvature can cross itself many times.

Problem 12. Draw a curve with positive curvature that crosses itself four times.

Problem 13. Show that a curve $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{2}$ that has positive increasing curvature is embedded (the term embedded in this context just means that the curve does not cross itself).

[^0]
[^0]: ${ }^{1}$ This result was orginially proven by Peter Tait in a paper published in 1896. Adolf Kneser rediscovered it and published a proof in 1912.

