Mathematics 551 Take home part of Test 1

This is due at the beginning of class on Friday, February 14.

We have derived the Frenet formulas for a unit speed curve and it would be a good idea to read the derivation in Shifrin's book:
https://math.franklin.uga.edu/sites/default/files/users/user317/ShifrinDiffGeo.pdf
(or see link on the class web page) section 2 pages $10-13$. In our notation these are

$$
\begin{aligned}
\mathbf{c}^{\prime} & =\mathbf{t} \\
\mathbf{t}^{\prime} & =\quad \kappa \mathbf{n} \\
\mathbf{n}^{\prime} & =-\kappa \mathbf{t} \quad+\tau \mathbf{b} \\
\mathbf{b}^{\prime} & =\quad-\tau \mathbf{n}
\end{aligned}
$$

where κ is the curvature, τ is the torsion, \mathbf{t} is the unit tangent, \mathbf{n} is the unit normal, and \mathbf{b} is the binormal.

In applications to physics engineering and so on, we think of $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{3}$ as $\mathbf{c}(t)$ being the position of a moving point at time t and questions about the motion of the point are as interesting as questions about just the geometry of the curve. So let $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{3}$ have as many derivatives as we need. Think of t as time and let $s=s(t)$ be arclength along \mathbf{c}, that is

$$
s(t)=\int_{a}^{t} \| \mathbf{c}^{\prime}(u) \mid d u
$$

so that

$$
\frac{d s}{d t}=\left\|\mathbf{c}^{\prime}(t)\right\|=v
$$

where v is the speed of the point. Now we rewrite the Frenet formulas in terms of derivatives in terms of t. To start we have

$$
\begin{aligned}
& \frac{d \mathbf{c}}{d s}=\mathbf{t} \\
& \frac{d \mathbf{t}}{d s}=\quad \kappa \mathbf{n} \\
& \frac{d \mathbf{n}}{d s}=-\kappa \mathbf{t} \quad+\tau \mathbf{b} \\
& \frac{d \mathbf{b}}{d s}=\quad-\tau \mathbf{n}
\end{aligned}
$$

Problem 1. (5 points) Use the chain rule: $\frac{d}{d t}=\frac{d s}{d t} \frac{d}{d s}=v \frac{d}{d s}$ to show

$$
\begin{aligned}
\frac{d \mathbf{c}}{d t} & =v \mathbf{t} \\
\frac{d^{2} \mathbf{c}}{d t^{2}} & =\frac{d v}{d t} \mathbf{t}+v^{2} \kappa \mathbf{n} \\
\frac{d^{3} \mathbf{c}}{d t^{3}} & =\left(v \frac{d v}{d t}-v^{3} \kappa^{2}\right) \mathbf{t}+\left(v \frac{d v}{d t} \kappa+\frac{d\left(v^{2} \kappa\right)}{d d t}\right) \mathbf{n}+v^{3} \kappa \tau \mathbf{b} .
\end{aligned}
$$

Problem 2. (5 points) Using the dot notation for time derivatives, that is $\frac{d u}{d t}=\dot{u}$, use the formulas of the previous problem so show

$$
\kappa=\frac{\|\dot{\mathbf{c}} \times \ddot{\mathbf{c}}\|}{v^{3}}
$$

and

$$
\tau=\frac{(\dot{\mathbf{c}} \times \ddot{\mathbf{c}}) \cdot \dddot{\mathbf{c}}}{\|\dot{\mathbf{c}} \times \ddot{\mathbf{c}}\|^{2}}
$$

In these formulas \times is the vector cross product.
To use some notation common in science and engineering let

$$
\begin{aligned}
\mathbf{v} & =\dot{\mathbf{c}} & & \text { (the velocity vector) } \\
\mathbf{a}=\dot{\mathbf{v}} & =\ddot{\mathbf{c}} & & \text { (the acceleration vector). }
\end{aligned}
$$

With this notation Newton's second law (force is mass times acceleration):

$$
\mathbf{F}=m \mathbf{a}
$$

becomes

$$
\mathbf{F}=m \ddot{\mathbf{c}}
$$

In the next problem we combine this with the Frenet to get a basic result in particle physics. It is also yet anther good example of the technique of getting new results by taking repeated derivatives of given formulas.

Problem 3 (Path of a charged particle in a magnetic field). (15 points) A standard model for the force on a particle moving in a magnetic field is

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}
$$

where \mathbf{v} is the vector of the particle and \mathbf{B} is is the magnetic field and q is the charge of the particle. We will assume that \mathbf{B} is constant. Then Newton's second law gives if $\mathbf{c}(t)$ is the position of the particle at time t that

$$
\begin{equation*}
m \frac{d^{2} \mathbf{c}}{d t^{2}}=q \frac{d \mathbf{c}}{d t} \times \mathbf{B} \tag{1}
\end{equation*}
$$

where m is the mass of the particle and q is its charge. Here we will show this implies the particle moves on a Helix. To do this it is enough to show the curvature and torsion are constant.
(a) Show the speed of \mathbf{c} is constant. Hint: it is enough to show

$$
\frac{d}{d t}\left\|\frac{d \mathbf{c}}{d t}\right\|^{2}=0
$$

To see this use that (1) and a basic property of cross products implies that $\dot{\mathbf{c}}$ and $\ddot{\mathbf{c}}$ are orthogonal. For the rest of this problem we let

$$
v_{0}=\left\|\frac{d \mathbf{c}}{d t}\right\|
$$

be the speed of the particle.
(b) Let s be the arclength be arclength along \mathbf{c}. Show

$$
\begin{equation*}
\frac{d \mathbf{c}}{d t}=v_{0} \frac{d \mathbf{c}}{d s}, \quad \frac{d^{2} \mathbf{c}}{d t^{2}}=v_{0}^{2} \frac{d^{2} \mathbf{c}}{d s^{2}} . \tag{2}
\end{equation*}
$$

(c) Use parts (a) and (b) of this problem along with Newton's second law to show

$$
\begin{equation*}
\frac{d^{2} \mathbf{c}}{d s^{2}}=\frac{d \mathbf{c}}{d s} \times \mathbf{A} \tag{3}
\end{equation*}
$$

where \mathbf{A} is the constant vector

$$
\mathbf{A}=\left(\frac{q}{n v_{0}}\right) \mathbf{B} .
$$

(d) Use (3) to show

$$
\frac{d^{3} \mathbf{c}}{d s^{3}}=\frac{d^{2} \mathbf{c}}{d s^{2}} \times \mathbf{A}, \quad \frac{d^{4} \mathbf{c}}{d s^{4}}=\frac{d^{3} \mathbf{c}}{d s^{3}} \times \mathbf{A}
$$

and therefore

$$
\left\|\frac{d^{2} \mathbf{c}}{d s^{2}}\right\| \quad \text { and } \quad\left\|\frac{d^{3} \mathbf{c}}{d s^{3}}\right\|
$$

are constant.
(e) Let θ be the angle between $\frac{d \mathbf{c}}{d s}$ and \mathbf{A} (which is the same as the angle between $\frac{d \mathbf{c}}{d t}$ and \mathbf{B}). Show θ, the curvature κ, and the torsion τ are all constant. (This shows the motion of the particle is a helix (or a circle if $\tau=0$) and the axis of the helix is parallel to the direction of \mathbf{B}.)
(f) (Optional open ended question.) In a cloud chamber contained inside a constant magnetic field \mathbf{B}, what can be observed of a charged particle moving through the chamber is the path of the particle. That is its axis (which we know to be parallel to \mathbf{B}), the curvature, the torsion, and θ, the angle the tangent to the helix makes with \mathbf{B}. Given this information how much can be deduced about the charge, q, the mass, m, and the speed, v_{0} of the particle?

Problem 4. (15 points) In this problem and the next you will answer the question: What are the conditions on the curvature and torsion that imply a curve is a subset of a sphere? To start let $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{3}$ be be a unit speed
curve that is on the sphere with center \mathbf{E} and radius R. We also assume that κ and τ never vanish. Then for $t \in[a, b]$ we have

$$
\|\mathbf{c}(t)-\mathbf{E}\|^{2}=R^{2} .
$$

As usual we take a derivative. Using the \mathbf{E} and R are constant and using $\mathbf{c}^{\prime}(t)=\mathbf{t}(t)$

$$
2 \mathbf{t}(t) \cdot(\mathbf{c}(t)-\mathbf{E})=2 \mathbf{c}^{\prime}(t) \cdot(\mathbf{c}(t)-\mathbf{E})=0,
$$

Thus $\mathbf{c}(t)-\mathbf{E}$ is orthogonal to \mathbf{T}. Therefore $\mathbf{c}(t)-\mathbf{E}$ is a linear combination of $\mathbf{n}(t)$ and $\mathbf{b}(t)$:

$$
\mathbf{c}-\mathbf{E}=u \mathbf{n}+v \mathbf{b}
$$

for functions $u, v:[a, b] \rightarrow \mathbb{R}$. This can be rewritten as

$$
\begin{equation*}
\mathbf{E}=\mathbf{c}+u \mathbf{n}+v \mathbf{b} . \tag{4}
\end{equation*}
$$

(a) Take the derivative of (4) and use that \mathbf{E} is constant and the Frenet formulas to get the equation

$$
\mathbf{0}=(1-u \kappa) \mathbf{t}+\left(u^{\prime}-v \tau\right) \mathbf{n}+\left(u \tau+v^{\prime}\right) \mathbf{b}
$$

and thus

$$
1-u \kappa=0, \quad u^{\prime}-v \tau=0 \quad u \tau+v^{\prime}=0
$$

(b) Show these imply

$$
\begin{aligned}
u & =\frac{1}{\kappa} \\
v & =\frac{1}{\tau}\left(\frac{1}{\kappa}\right)^{\prime} \\
\frac{\tau}{\kappa}+\left(\frac{1}{\tau}\left(\frac{1}{\kappa}\right)^{\prime}\right)^{\prime} & =0
\end{aligned}
$$

(c) Conclude that if \mathbf{c} is on a sphere that

$$
\frac{\tau}{\kappa}+\left(\frac{1}{\tau}\left(\frac{1}{\kappa}\right)^{\prime}\right)^{\prime}=0
$$

holds along the curve.
Problem 5. (15 points) Let c: $[a, b] \rightarrow \mathbb{R}^{3}$ be any curve with nonvanishing curvature and torsion and set

$$
\mathbf{E}=\mathbf{c}+\frac{1}{\kappa} \mathbf{n}+\frac{1}{\tau}\left(\frac{1}{\kappa}\right)^{\prime} \mathbf{b}
$$

(a) Show

$$
\mathbf{E}^{\prime}=\left(\frac{\tau}{\kappa}+\left(\frac{1}{\tau}\left(\frac{1}{\kappa}\right)^{\prime}\right)^{\prime}\right) \mathbf{b}
$$

Hint: This maybe an bit more transparent if you let

$$
\mathbf{E}=\mathbf{c}+u \mathbf{n}+v \mathbf{b}
$$

with

$$
u=\frac{1}{\kappa} \quad \text { and } \quad v=\frac{1}{\tau}\left(\frac{1}{\kappa}\right)^{\prime} .
$$

Then you can just refer to a calculation done in Problem 4 to get the result.
(b) Conclude that $\mathbf{E}(t)$ is constant if and only if

$$
\begin{equation*}
\frac{\tau}{\kappa}+\left(\frac{1}{\tau}\left(\frac{1}{\kappa}\right)^{\prime}\right)^{\prime}=0 \tag{5}
\end{equation*}
$$

(c) Show that if (5) holds on \mathbf{c} that

$$
\frac{d}{d s}\|\mathbf{c}(s)-\mathbf{E}\|^{2}=0
$$

(d) Finish by explaining why if (5) holds on \mathbf{c}, then \mathbf{c} moves on a sphere.
(e) (Optional open ended question.) Is there an anologue of the Tait-Kneser theorem for space curves? In particular let, as above, let

$$
\mathbf{E}=\mathbf{c}+\frac{1}{\kappa} \mathbf{n}+\frac{1}{\tau}\left(\frac{1}{\kappa}\right)^{\prime} \mathbf{b}
$$

and

$$
\rho=\|\mathbf{E}-\mathbf{c}\|=\sqrt{\left(\frac{1}{\kappa}\right)^{2}+\left(\frac{1}{\tau}\left(\frac{1}{\kappa}\right)^{\prime}\right)^{2}} .
$$

Is there a natural condition on κ and τ that implies the spheres with centers $\mathbf{E}(s)$ and radius $\rho(s)$ are nested?

