Mathematics 551 Take home part of Test 1

This is due at the beginning of class on Friday, February 14.

We have derived the Frenet formulas for a unit speed curve and it would
be a good idea to read the derivation in Shifrin’s book:

https://math.franklin.uga.edu/sites/default/files/users/user317/ShifrinDiffGeo.pdf

(or see link on the class web page) section 2 pages 10-13. In our notation
these are

n = —xt +7b

where k is the curvature, 7 is the torsion, t is the unit tangent, n is the unit
normal, and b is the binormal.

In applications to physics engineering and so on, we think of c: [a, b] — R?
as c(t) being the position of a moving point at time ¢ and questions about the
motion of the point are as interesting as questions about just the geometry
of the curve. So let c: [a,b] — R?® have as many derivatives as we need.
Think of ¢ as time and let s = s(t) be arclength along c, that is

s(t) = [ 1) du

so that

ds ,

— = ||lc'(t)|| =

= =)
where v is the speed of the point. Now we rewrite the Frenet formulas in
terms of derivatives in terms of ¢. To start we have
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https://math.franklin.uga.edu/sites/default/files/users/user317/ShifrinDiffGeo.pdf

Problem 1. (5 points) Use the chain rule: % = %dﬁ = vdi to show
dc
o vt
ﬁ = @t +v?kn
ez dt
3 2
% = <v27; - v3n2> t+ <UC§;)/€ + d(;d:)> n + v’k7b. 0

Problem 2. (5 points) Using the dot notation for time derivatives, that is
% = 1, use the formulas of the previous problem so show

e xé
V3
and
o (c'x c) c
e x €2
In these formulas x is the vector cross product. (|

To use some notation common in science and engineering let

v==¢ (the velocity vector)

a=v=_¢ (the acceleration vector).
With this notation Newton’s second law (force is mass times acceleration):
F =ma

becomes
F =mc¢

In the next problem we combine this with the Frenet to get a basic result
in particle physics. It is also yet anther good example of the technique of
getting new results by taking repeated derivatives of given formulas.

Problem 3 (Path of a charged particle in a magnetic field). (15 points) A
standard model for the force on a particle moving in a magnetic field is

F=qgqvxB

where v is the vector of the particle and B is is the magnetic field and ¢
is the charge of the particle. We will assume that B is constant. Then
Newton’s second law gives if ¢(t) is the position of the particle at time ¢
that ,
d“c dc

Moy = A X B. (1)
where m is the mass of the particle and ¢ is its charge. Here we will show
this implies the particle moves on a Helix. To do this it is enough to show

the curvature and torsion are constant.



(a) Show the speed of ¢ is constant. Hint: it is enough to show

d ||de|®

dt || dt
To see this use that and a basic property of cross products implies
that ¢ and ¢ are orthogonal. For the rest of this problem we let

dc

dt

1)():‘

be the speed of the particle.
(b) Let s be the arclength be arclength along c¢. Show

dc dc d*c ,d*c

= o — = ph—— 2
at ~ s e~ as? @)
(c) Use parts (a) and (b) of this problem along with Newton’s second law
to show ,
d“c dc
= xA 3
ds?  ds 3)

where A is the constant vector

A= <q) B.
nvo

(d) Use (3) to show

d3c  d?c d*¢ d3c
— = — XA — = — XA
ds3  ds? i ds*  ds3 x
and therefore
Pl oy [
ds? ds3

are constant.

(e) Let 6 be the angle between % and A (which is the same as the angle
s

dc
between o and B). Show 6, the curvature k, and the torsion 7 are all

constant. (This shows the motion of the particle is a helix (or a circle if
7 = 0) and the axis of the helix is parallel to the direction of B.)

(f) (Optional open ended question.) In a cloud chamber contained inside a
constant magnetic field B, what can be observed of a charged particle
moving through the chamber is the path of the particle. That is its axis
(which we know to be parallel to B), the curvature, the torsion, and 6,
the angle the tangent to the helix makes with B. Given this information
how much can be deduced about the charge, ¢, the mass, m, and the
speed, vy of the particle? O

Problem 4. (15 points) In this problem and the next you will answer the
question: What are the conditions on the curvature and torsion that imply
a curve is a subset of a sphere? To start let c: [a,b] — R3 be be a unit speed



4

curve that is on the sphere with center E and radius R. We also assume
that x and 7 never vanish. Then for ¢ € [a, b] we have

le(t) — EIJ* = R
As usual we take a derivative. Using the E and R are constant and using
c/(t) = t(¢)

2(t) - (clt) — E) = 2/(¢) - (clt) — E) =0,

Thus c(t) — E is orthogonal to T. Therefore c(¢) — E is a linear combination
of n(t) and b(t):

c—E=un+vb
for functions w,v: [a,b] — R. This can be rewritten as

E =c+ un + vb. (4)

(a) Take the derivative of and use that E is constant and the Frenet
formulas to get the equation

0=(1—ur)t+ (' —vr)n+ (ur +")b
and thus
1—uxk =0, u —vr =0 ur +v' =0

(b) Show these imply

v =

() -

(¢) Conclude that if ¢ is on a sphere that

) -

holds along the curve. O

R

Problem 5. (15 points) Let c: [a,b] — R? be any curve with nonvanishing
curvature and torsion and set

1 1/1\
E:c+n+< >b
K

T K

#= ()

Hint: This maybe an bit more transparent if you let

(a) Show

E=c+un+vb



with

1 1 /1Y
u=— and v:(>.
K T\ K

Then you can just refer to a calculation done in Problem 4 to get the
result.

(b) Conclude that E(t) is constant if and only if

()

(c) Show that if holds on c that

~e(s) ~BJ* =0.

(d) Finish by explaining why if holds on ¢, then ¢ moves on a sphere.
(e) (Optional open ended question.) Is there an anologue of the Tait-Kneser

theorem for space curves? In particular let, as above, let

1 1/1)
E:c+n—|—<> b
K T K

p-imai- () (4 (3))

Is there a natural condition on k and 7 that implies the spheres with
centers E(s) and radius p(s) are nested?

and




