
Mathematics 551 Homework, February 27, 2024
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1. The first fundamental form

Here we will look at parameterizations of some surfaces and do our best
to get a feel for the meaning of the first fundamental form.

To start we let U be an open set in R2 and xxx : U → R3 a regular param-
eterization. That is xxx is injective and

xxxu × xxxv ̸= 000.

Set

E := xxxu···xxxu, F := xxxu···xxxv, G = xxxv···xxxv.
Then the first first fundamental form of xxx, first defined by Gauss, is

I = E du2 + 2F dudv +Gdv2.

Let ccc(t) = (u(t), v(t)) with a ≤ t ≤ b be a curve in the domain of the
parameters and let

γγγ(t) = xxx(ccc(t)) = xxx(u(t), v(t))

be the image of ccc under xxx. Then by the chain rule

γγγ′(t) =
d

dt
xxx(u(t), v(t)) = xxxuu̇+ xxxvv̇.

Therefore

∥γγγ′(t)∥2 = ∥xxxuu̇+ xxxvv̇∥2 = Eu̇2 + 2Fu̇v̇ +Gv̇2.

and thus the length of γγγ is

L(γγγ) =

∫ b

a

√
Eu̇2 + 2Fu̇v̇ +Gv̇2 dt
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It we use the usual notation for differentials du = u̇ dt and dv = v̇ dt then
dt =

√
dt2 can be moved under the square root to give

L(γγγ) =

∫ b

a

√
E du2 + 2F dudv +Gdv2.

Thus arc length is found by integrating
√
E du2 + 2F dudv +Gdv2 along

the curve. So classically (in the days of Euler, Lagrange, Gauss, etc.) this
would be written as

ds =
√
E du2 + 2F dudv +Gdv2

and so anther notation for the first fundamental is

ds2 = I = E du2 + 2F dudv +Gdv2.

Here is a more modern point of view. Let M denote the image of xxx and let
(u0, v0) ∈ U be a point in the domain of the domain, U , of the parameters
and let P = xxx(u0, v0) be the corresponding point on M . We would like to
define the tangent space to M at P . Let ccc : (−δ, δ) → U with ccc(0) = (u0, v0)
be a curve in U through (u0, v0). Write this in the coordinates on U as

ccc(t) = (u(t), v(t)

Then the curve

γγγ(t) = xxx(ccc(t)) = xxx(u(t), v(t))

is a curve in M with

γγγ(0) = xxx(u(0), v(0)) = xxx(u0, v0) = P.

Thus γγγ is a curve in the surface with through P . Our definition of the
tangent space to M at P , denoted TPM , is the set of all tangent vectors
to such curves. Using the chain rule we have

γγγ′(t) =
d

dt
xxx(u(t), v(t))

∣∣∣∣
t=0

= u′(0)xxxu(u0, v0) + v′(0)xxx(u0, v0)

which is a linear combination of the vectors xxxu(u0, v0) and xxx(u0, v0). So an
equivalent definition of TPM , and the one we will work with, is

TPM = {ξxxxu(u0, v0) + ηxxxv(u0, v0) : ξ, η ∈ R}
which is just set theoretic notation for the set of all linear combinations
of xxxu(u0, v0) and xxxv(u0, v0). We now relate the first fundamental form, I,
to the inner product of tangent vectors in the tangent space. Let vvv1 =
ξ1xu(u0, v0) + η1xxxv(u0, v0) and vvv2 = ξ2xxxu(u0, v0) + η2xxxv(u0, v0). Then the
inner product of these vectors is

vvv1···vvv2 = (ξ1xu(u0, v0) + η1xxxv(u0, v0)) ··· (ξ2xxxu(u0, v0) + η2xxxv(u0, v0))

= E(u0, v0)ξ1ξ2 + F (u0, v0)(ξ1η1 + ξ2η1) +G(u0, v0)η1η2.

Or in somewhat less precise, but more readable notation,

(1) vvv1···vvv2 = Eξ1ξ2 + F (ξ1η1 + ξ2η1) +Gη1η2.
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With this notation we can also view IP as a function, IP (vvv1, vvv2), of pairs of
vectors v1, vvv2 ∈ TPM by the formula (1).

Proposition 1. With this definition IP is a symmetric form on the tangent
space TPM . That is

(a) IP is bilinear, that is it is a linear function of each of its arguments: For
any scalars c and c′

IP (cvvv1 + c′vvv′1, vvv2) = cIP (vvv1, vvv2) + c′IP (vvv
′
1, vvv2)

IP (vvv1, cvvv2 + c′vvv′2) = cIP (vvv1, vvv2) + c′IP (vvv1, vvv
′
2)

(b) IP is symmetric,
IP (vvv1, vvv2) = IP (vvv2, vvv1).

Problem 1. Write out enough of a proof of this so that you believe it. Do
not hand this in. □

Here is an example. Assume a regular parameterization, xxx with first
fundamental form

I = (1 + u2)du2 + 2uv dudv + (1 + v2) dv2.

for some surface M . Let

aaa = 2xxxu(1, 2) + 3xxxv(1, 2), bbb = 4xxxu(1, 2) + 5xxx(1, 2)

be vectors tangent to M at P = xxx(1, 2). Let us find the length of these
vectors and the angle between them. The first fundamental form of M at P
is

IP = (1 + 12)du2 + 2(1)(2) + (1 + 22)dv2 = 2du2 + 4dudv + 5dv2.

This implies that at P

IP (xxxu,xxxu) = 2, IP (xxxu,xxxv) = 2, IP (xxxv,xxxv) = 5.

So using the bilinearity and symmetry of IP we get at P that

IP (aaa,aaa) = IP (2xxxu + 3xxxv, 2xxxu + 3xxxv)

= 22IP (xxxu,xxxu) + 2(2)(3)IP (xxxu,xxxv) + 32IP (xxxu,xxxv)

= 4(2) + 12(2) + 9(5)

= 77

IP (aaa,bbb) = IP (2xxx+ 3xxxv, 4xxxu + 5xxxv)

= 22IP (xxxu,xxxu) + ((2)(5) + (3)(4))IP (xxxu,xxxv) + (3)(5)IP (xxxu,xxxv)

= 4(2) + 22(2) + 15(5)

= 127

IP (bbb, bbb) = IP (4xxx+ 5xxxv, 4xxxu + 5xxxv)

= 42IP (xxxu,xxxu) + 2(4)(5)IP (xxxu,xxxv) + 52IP (xxxu,xxxv)

= 16(2) + 40(2) + 25(5)

= 237



4

Therefore

∥aaa∥ =
√
77

∥bbb∥ =
√
237

and it θ is the angle between aaa and bbb

aaa···bbb = IP (aaa,bbb) = 127 = ∥1a∥∥bbb∥ cos(θ) =
√
67
√
237 cos(θ).

Therefore

θ = arccos
(
127/

√
(77)(237)

)
= arccos

(
127/

√
18,249

)
Problem 2. Let xxx be a parameterization of a surface M with first funda-
mental

ds2 = (1 + u2v2)du2 + 2uv dudv + (2 + u2v2) dv2.

Let P = xxx(1, 0) and let

aaa = 2xxxu(1, 0)− 3xxxv(1, 0), bbb = −xxxu(1, 0) + 4xxx(1, 0).

Find the length of aaa and bbb and the angle between aaa and bbb. □

Problem 3. Let I = E du2+2F dudv+Gdv2 be the first fundamental form
of a parameterization xxx. Show that it θ is the angle between xxxu and xxxv, then

cos(θ) =

√
E
√
G

F
.

Use that | cos(θ)| < 1 to conclude that F 2 < EG. (We have that | cos(t)| < 1
because if | cos(θ)| = 1, then θ = 0 (when cos(θ) = 1) or θ = π (when
cos(θ) = −1. But in these two cases ether xxxu and xxxv either point in the
same direction or in opposite directions, contradicting that xxxi and xxxv are
linearly independent). □

2. Examples of parameterizations of surfaces

2.1. Monge patches. . Here is what is the most basic example. Let U ⊆
R2 be an open set and f : U → R. Then

xxx(u, v) = (u, v, f(u, v))

for (u, v) ∈ U parameterizes the graph of f . Such a parameterization is
called a Monge patch .

Problem 4. Show the first fundamental form of a Monge patch is

ds2 = (1 + f2
u) du

2 + 2fufv dydv + (1 + f2
v ) dv

2
□

For an example of a Monge patch see Figure 1.
Even if a surface is not originally thought of as a graph, it can still be

useful to parameterize parts of it with a Monge patch. See figure 2
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Figure 1. The Monge patch for the graph of z = x2−y2+4
over the domain U = (−1, 1)× (−1, 1).

Figure 2. The upper half of the sphere x2 + y2 + z1 = 1

represented as the graph of z =
√
1− x2 − y2.

2.2. Cylinders. Let ccc(s) = (x(t), y(t)) with a ≤ s ≤ b be curve in the
plane. Then the cylinder over this curve the surface parameterized by

xxx(u, v) = (x(u), y(u), v).

This the union of the set of all lines parallel to the z-axis and intersect ccc.
For an example of a cylinder see Figure

Problem 5. Use that ccc is unit speed to show the first fundamental form of
xxx is

ds2 = (x′(u)2 + y′(u)2) du2 + dv2.

Thus if ccc is unit speed this becomes

ds2 = du2 + dv2.

2.3. Rotating frames. Now let use look at examples of parameterizations
of some surfaces. Several calculations are easier if expressed in terms of a
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Figure 3. A part of the cylinder over the curve ccc(t) =

et/20 cos(t), et/20 sin(t)).

rotating orthonormal basis. For θ ∈ R define

eee1(θ) = (cos(θ), sin(θ), 0)

eee2(θ) = (− sin(θ), sin(θ), 0)

eee3 = (0, 0, 1).

Formulas that will come up several times are

eee′1(θ) = eee2(θ)

eee′2(θ) = −eee1(θ)
eee′3 = 0.

2.4. Helicoids. These have parameterization

xxx(u, v) = veee1(u) + bueee3

where b is a constant.

Problem 6. Compute the first fundamental form of the helicoid □

Figure 4. A part of the helicoid xxx(u, v) = (v cos(u), v sin(u), u).
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2.5. Surfaces of revolution. Let U = {(x, y) : u > 0} be the right half
plane in the x-y plane and let. Let

ccc(t) = (x(t), y(t))

be a curve in U (so that x(t) > 0. Then the surface we get by rotating
revolving this curve around the y axis is parameterized

xxx(t, θ) = x(t)eee1(θ) + y(t)eee3

where we have taken a break from using u and v as the parameter names.
Examples of surfaces of revolution are in Figures 5 and 6

Problem 7. Compute the first fundamental form of xxx. □

Figure 5. The torus formed by revolving the circle (x −
3)2 + y2 = 1 about the y-axis.

Figure 6. Part of the catenoid formed by revolving x =
cosh(y) around the y axis.

Problem 8. Figure 7 is the cone z2 = x2 + y2. Find a parameterization of
the upper half of this cone and compute its first fundamental form. □
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Figure 7. Part of the cone defined by z2 = x2 + y2.

2.6. Möbius strip. A Möbius strip can be parameterized by

xxx(t, θ) = (2 + t cos(θ/2))eee1(θ) + t sin(θ/2)eee3.

See Figure 8

Problem 9. Compute the first fundamental of this Möbius strip.

Figure 8. A Möbius strip.

2.7. Tubes around curves. Let ccc : [a, b] → R3 be a unit speed curve and
let r > 0. Then the tube of radius r about ccc is the curve parameterized
by

xxx(s, t) = ccc(s) + r cos(t)nnn(s) + r sin(t)bbb(s).

Problem 10. As a refresher about using the Frenet formulas, compute the
first fundamental form of this tube. □
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