Mathematics 551 Homework, February 27, 2024

Contents

1. The first fundamental form 1
2. Examples of parameterizations of surfaces 4
2.1. Monge patches 4
2.2. Cylinders 5
2.3. Rotating frames 5
2.4. Helicoids 6
2.5. Surfaces of revolution 7
2.6. Möbius strip. 8
2.7. Tubes around curves 8

1. The first fundamental form

Here we will look at parameterizations of some surfaces and do our best to get a feel for the meaning of the first fundamental form.

To start we let U be an open set in \mathbb{R}^{2} and $\boldsymbol{x}: U \rightarrow \mathbb{R}^{3}$ a regular parameterization. That is \boldsymbol{x} is injective and

$$
\boldsymbol{x}_{u} \times \boldsymbol{x}_{v} \neq \mathbf{0}
$$

Set

$$
E:=\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{u}, \quad F:=\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{v}, \quad G=\boldsymbol{x}_{v} \cdot \boldsymbol{x}_{v}
$$

Then the first first fundamental form of \boldsymbol{x}, first defined by Gauss, is

$$
I=E d u^{2}+2 F d u d v+G d v^{2}
$$

Let $\boldsymbol{c}(t)=(u(t), v(t))$ with $a \leq t \leq b$ be a curve in the domain of the parameters and let

$$
\boldsymbol{\gamma}(t)=\boldsymbol{x}(\boldsymbol{c}(t))=\boldsymbol{x}(u(t), v(t))
$$

be the image of \boldsymbol{c} under \boldsymbol{x}. Then by the chain rule

$$
\gamma^{\prime}(t)=\frac{d}{d t} \boldsymbol{x}(u(t), v(t))=\boldsymbol{x}_{u} \dot{u}+\boldsymbol{x}_{v} \dot{v}
$$

Therefore

$$
\left\|\boldsymbol{\gamma}^{\prime}(t)\right\|^{2}=\left\|\boldsymbol{x}_{u} \dot{u}+\boldsymbol{x}_{v} \dot{v}\right\|^{2}=E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2} .
$$

and thus the length of γ is

$$
L(\boldsymbol{\gamma})=\int_{a}^{b} \sqrt{E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2}} d t
$$

It we use the usual notation for differentials $d u=\dot{u} d t$ and $d v=\dot{v} d t$ then $d t=\sqrt{d t^{2}}$ can be moved under the square root to give

$$
L(\gamma)=\int_{a}^{b} \sqrt{E d u^{2}+2 F d u d v+G d v^{2}} .
$$

Thus arc length is found by integrating $\sqrt{E d u^{2}+2 F d u d v+G d v^{2}}$ along the curve. So classically (in the days of Euler, Lagrange, Gauss, etc.) this would be written as

$$
d s=\sqrt{E d u^{2}+2 F d u d v+G d v^{2}}
$$

and so anther notation for the first fundamental is

$$
d s^{2}=I=E d u^{2}+2 F d u d v+G d v^{2} .
$$

Here is a more modern point of view. Let M denote the image of \boldsymbol{x} and let $\left(u_{0}, v_{0}\right) \in U$ be a point in the domain of the domain, U, of the parameters and let $P=\boldsymbol{x}\left(u_{0}, v_{0}\right)$ be the corresponding point on M. We would like to define the tangent space to M at P. Let $\boldsymbol{c}:(-\delta, \delta) \rightarrow U$ with $\boldsymbol{c}(0)=\left(u_{0}, v_{0}\right)$ be a curve in U through $\left(u_{0}, v_{0}\right)$. Write this in the coordinates on U as

$$
\boldsymbol{c}(t)=(u(t), v(t)
$$

Then the curve

$$
\boldsymbol{\gamma}(t)=\boldsymbol{x}(\boldsymbol{c}(t))=\boldsymbol{x}(u(t), v(t))
$$

is a curve in M with

$$
\boldsymbol{\gamma}(0)=\boldsymbol{x}(u(0), v(0))=\boldsymbol{x}\left(u_{0}, v_{0}\right)=P .
$$

Thus γ is a curve in the surface with through P. Our definition of the tangent space to M at P, denoted $T_{P} M$, is the set of all tangent vectors to such curves. Using the chain rule we have

$$
\boldsymbol{\gamma}^{\prime}(t)=\left.\frac{d}{d t} \boldsymbol{x}(u(t), v(t))\right|_{t=0}=u^{\prime}(0) \boldsymbol{x}_{u}\left(u_{0}, v_{0}\right)+v^{\prime}(0) \boldsymbol{x}\left(u_{0}, v_{0}\right)
$$

which is a linear combination of the vectors $\boldsymbol{x}_{u}\left(u_{0}, v_{0}\right)$ and $\boldsymbol{x}\left(u_{0}, v_{0}\right)$. So an equivalent definition of $T_{P} M$, and the one we will work with, is

$$
T_{P} M=\left\{\xi \boldsymbol{x}_{u}\left(u_{0}, v_{0}\right)+\eta \boldsymbol{x}_{v}\left(u_{0}, v_{0}\right): \xi, \eta \in \mathbb{R}\right\}
$$

which is just set theoretic notation for the set of all linear combinations of $\boldsymbol{x}_{u}\left(u_{0}, v_{0}\right)$ and $\boldsymbol{x}_{v}\left(u_{0}, v_{0}\right)$. We now relate the first fundamental form, I, to the inner product of tangent vectors in the tangent space. Let $\boldsymbol{v}_{1}=$ $\xi_{1} x_{u}\left(u_{0}, v_{0}\right)+\eta_{1} \boldsymbol{x}_{v}\left(u_{0}, v_{0}\right)$ and $\boldsymbol{v}_{2}=\xi_{2} \boldsymbol{x}_{u}\left(u_{0}, v_{0}\right)+\eta_{2} \boldsymbol{x}_{v}\left(u_{0}, v_{0}\right)$. Then the inner product of these vectors is

$$
\begin{aligned}
\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2} & =\left(\xi_{1} x_{u}\left(u_{0}, v_{0}\right)+\eta_{1} \boldsymbol{x}_{v}\left(u_{0}, v_{0}\right)\right) \cdot\left(\xi_{2} \boldsymbol{x}_{u}\left(u_{0}, v_{0}\right)+\eta_{2} \boldsymbol{x}_{v}\left(u_{0}, v_{0}\right)\right) \\
& =E\left(u_{0}, v_{0}\right) \xi_{1} \xi_{2}+F\left(u_{0}, v_{0}\right)\left(\xi_{1} \eta_{1}+\xi_{2} \eta_{1}\right)+G\left(u_{0}, v_{0}\right) \eta_{1} \eta_{2} .
\end{aligned}
$$

Or in somewhat less precise, but more readable notation,

$$
\begin{equation*}
\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2}=E \xi_{1} \xi_{2}+F\left(\xi_{1} \eta_{1}+\xi_{2} \eta_{1}\right)+G \eta_{1} \eta_{2} . \tag{1}
\end{equation*}
$$

With this notation we can also view I_{P} as a function, $I_{P}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$, of pairs of vectors $v_{1}, \boldsymbol{v}_{2} \in T_{P} M$ by the formula (1).
Proposition 1. With this definition I_{P} is a symmetric form on the tangent space $T_{P} M$. That is
(a) I_{P} is bilinear, that is it is a linear function of each of its arguments: For any scalars c and c^{\prime}

$$
\begin{aligned}
& I_{P}\left(c \boldsymbol{v}_{1}+c^{\prime} \boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}\right)=c I_{P}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)+c^{\prime} I_{P}\left(\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}\right. \\
& I_{P}\left(\boldsymbol{v}_{1}, c \boldsymbol{v}_{2}+c^{\prime} \boldsymbol{v}_{2}^{\prime}\right)=c I_{P}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)+c^{\prime} I_{P}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}^{\prime}\right)
\end{aligned}
$$

(b) I_{P} is symmetric,

$$
I_{P}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)=I_{P}\left(\boldsymbol{v}_{2}, \boldsymbol{v}_{1}\right) .
$$

Problem 1. Write out enough of a proof of this so that you believe it. Do not hand this in.

Here is an example. Assume a regular parameterization, \boldsymbol{x} with first fundamental form

$$
I=\left(1+u^{2}\right) d u^{2}+2 u v d u d v+\left(1+v^{2}\right) d v^{2} .
$$

for some surface M. Let

$$
\boldsymbol{a}=2 \boldsymbol{x}_{u}(1,2)+3 \boldsymbol{x}_{v}(1,2), \quad \boldsymbol{b}=4 \boldsymbol{x}_{u}(1,2)+5 \boldsymbol{x}(1,2)
$$

be vectors tangent to M at $P=\boldsymbol{x}(1,2)$. Let us find the length of these vectors and the angle between them. The first fundamental form of M at P is

$$
I_{P}=\left(1+1^{2}\right) d u^{2}+2(1)(2)+\left(1+2^{2}\right) d v^{2}=2 d u^{2}+4 d u d v+5 d v^{2} .
$$

This implies that at P

$$
I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{u}\right)=2, \quad I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right)=2, \quad I_{P}\left(\boldsymbol{x}_{v}, \boldsymbol{x}_{v}\right)=5
$$

So using the bilinearity and symmetry of I_{P} we get at P that

$$
\begin{aligned}
I_{P}(\boldsymbol{a}, \boldsymbol{a}) & =I_{P}\left(2 \boldsymbol{x}_{u}+3 \boldsymbol{x}_{v}, 2 \boldsymbol{x}_{u}+3 \boldsymbol{x}_{v}\right) \\
& =2^{2} I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{u}\right)+2(2)(3) I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right)+3^{2} I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right) \\
& =4(2)+12(2)+9(5) \\
& =77 \\
I_{P}(\boldsymbol{a}, \boldsymbol{b}) & =I_{P}\left(2 \boldsymbol{x}+3 \boldsymbol{x}_{v}, 4 \boldsymbol{x}_{u}+5 \boldsymbol{x}_{v}\right) \\
& =2^{2} I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{u}\right)+((2)(5)+(3)(4)) I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right)+(3)(5) I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right) \\
& =4(2)+22(2)+15(5) \\
& =127 \\
I_{P}(\boldsymbol{b}, \boldsymbol{b}) & =I_{P}\left(4 \boldsymbol{x}+5 \boldsymbol{x}_{v}, 4 \boldsymbol{x}_{u}+5 \boldsymbol{x}_{v}\right) \\
& =4^{2} I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{u}\right)+2(4)(5) I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right)+5^{2} I_{P}\left(\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right) \\
& =16(2)+40(2)+25(5) \\
& =237
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\|\boldsymbol{a}\| & =\sqrt{77} \\
\|\boldsymbol{b}\| & =\sqrt{237}
\end{aligned}
$$

and it θ is the angle between \boldsymbol{a} and \boldsymbol{b}

$$
\boldsymbol{a} \cdot \boldsymbol{b}=I_{P}(\boldsymbol{a}, \boldsymbol{b})=127=\|1 a\|\|\boldsymbol{b}\| \cos (\theta)=\sqrt{67} \sqrt{237} \cos (\theta) .
$$

Therefore

$$
\theta=\arccos (127 / \sqrt{(77)(237)})=\arccos (127 / \sqrt{18,249})
$$

Problem 2. Let \boldsymbol{x} be a parameterization of a surface M with first fundamental

$$
d s^{2}=\left(1+u^{2} v^{2}\right) d u^{2}+2 u v d u d v+\left(2+u^{2} v^{2}\right) d v^{2} .
$$

Let $P=\boldsymbol{x}(1,0)$ and let

$$
\boldsymbol{a}=2 \boldsymbol{x}_{u}(1,0)-3 \boldsymbol{x}_{v}(1,0), \quad \boldsymbol{b}=-\boldsymbol{x}_{u}(1,0)+4 \boldsymbol{x}(1,0) .
$$

Find the length of \boldsymbol{a} and \boldsymbol{b} and the angle between \boldsymbol{a} and \boldsymbol{b}.
Problem 3. Let $I=E d u^{2}+2 F d u d v+G d v^{2}$ be the first fundamental form of a parameterization \boldsymbol{x}. Show that it θ is the angle between \boldsymbol{x}_{u} and \boldsymbol{x}_{v}, then

$$
\cos (\theta)=\frac{\sqrt{E} \sqrt{G}}{F} .
$$

Use that $|\cos (\theta)|<1$ to conclude that $F^{2}<E G$. (We have that $|\cos (t)|<1$ because if $|\cos (\theta)|=1$, then $\theta=0$ (when $\cos (\theta)=1$) or $\theta=\pi$ (when $\cos (\theta)=-1$. But in these two cases ether \boldsymbol{x}_{u} and \boldsymbol{x}_{v} either point in the same direction or in opposite directions, contradicting that \boldsymbol{x}_{i} and \boldsymbol{x}_{v} are linearly independent).

2. Examples of parameterizations of surfaces

2.1. Monge patches. . Here is what is the most basic example. Let $U \subseteq$ \mathbb{R}^{2} be an open set and $f: U \rightarrow \mathbb{R}$. Then

$$
\boldsymbol{x}(u, v)=(u, v, f(u, v))
$$

for $(u, v) \in U$ parameterizes the graph of f. Such a parameterization is called a Monge patch.

Problem 4. Show the first fundamental form of a Monge patch is

$$
d s^{2}=\left(1+f_{u}^{2}\right) d u^{2}+2 f_{u} f_{v} d y d v+\left(1+f_{v}^{2}\right) d v^{2}
$$

For an example of a Monge patch see Figure 1.
Even if a surface is not originally thought of as a graph, it can still be useful to parameterize parts of it with a Monge patch. See figure 2

Figure 1. The Monge patch for the graph of $z=x^{2}-y^{2}+4$ over the domain $U=(-1,1) \times(-1,1)$.

Figure 2. The upper half of the sphere $x^{2}+y^{2}+z^{1}=1$ represented as the graph of $z=\sqrt{1-x^{2}-y^{2}}$.
2.2. Cylinders. Let $\boldsymbol{c}(s)=(x(t), y(t))$ with $a \leq s \leq b$ be curve in the plane. Then the cylinder over this curve the surface parameterized by

$$
\boldsymbol{x}(u, v)=(x(u), y(u), v) .
$$

This the union of the set of all lines parallel to the z-axis and intersect \boldsymbol{c}. For an example of a cylinder see Figure

Problem 5. Use that \boldsymbol{c} is unit speed to show the first fundamental form of x is

$$
d s^{2}=\left(x^{\prime}(u)^{2}+y^{\prime}(u)^{2}\right) d u^{2}+d v^{2}
$$

Thus if \boldsymbol{c} is unit speed this becomes

$$
d s^{2}=d u^{2}+d v^{2}
$$

2.3. Rotating frames. Now let use look at examples of parameterizations of some surfaces. Several calculations are easier if expressed in terms of a

6

Figure 3. A part of the cylinder over the curve $\boldsymbol{c}(t)=$ $\left.e^{t / 20} \cos (t), e^{t / 20} \sin (t)\right)$.
rotating orthonormal basis. For $\theta \in \mathbb{R}$ define

$$
\begin{aligned}
\boldsymbol{e}_{1}(\theta) & =(\cos (\theta), \sin (\theta), 0) \\
\boldsymbol{e}_{2}(\theta) & =(-\sin (\theta), \sin (\theta), 0) \\
\boldsymbol{e}_{3} & =(0,0,1) .
\end{aligned}
$$

Formulas that will come up several times are

$$
\begin{aligned}
\boldsymbol{e}_{1}^{\prime}(\theta) & =\boldsymbol{e}_{2}(\theta) \\
\boldsymbol{e}_{2}^{\prime}(\theta) & =-\boldsymbol{e}_{1}(\theta) \\
\boldsymbol{e}_{3}^{\prime} & =0 .
\end{aligned}
$$

2.4. Helicoids. These have parameterization

$$
\boldsymbol{x}(u, v)=v \boldsymbol{e}_{1}(u)+b u e_{3}
$$

where b is a constant.
Problem 6. Compute the first fundamental form of the helicoid

Figure 4. A part of the helicoid $\boldsymbol{x}(u, v)=(v \cos (u), v \sin (u), u)$.
2.5. Surfaces of revolution. Let $U=\{(x, y): u>0\}$ be the right half plane in the $x-y$ plane and let. Let

$$
\boldsymbol{c}(t)=(x(t), y(t))
$$

be a curve in U (so that $x(t)>0$. Then the surface we get by rotating revolving this curve around the y axis is parameterized

$$
\boldsymbol{x}(t, \theta)=x(t) \boldsymbol{e}_{1}(\theta)+y(t) \boldsymbol{e}_{3}
$$

where we have taken a break from using u and v as the parameter names. Examples of surfaces of revolution are in Figures 5 and 6

Problem 7. Compute the first fundamental form of \boldsymbol{x}.

Figure 5. The torus formed by revolving the circle $(x-$ $3)^{2}+y^{2}=1$ about the y-axis.

Figure 6. Part of the catenoid formed by revolving $x=$ $\cosh (y)$ around the y axis.

Problem 8. Figure 7 is the cone $z^{2}=x^{2}+y^{2}$. Find a parameterization of the upper half of this cone and compute its first fundamental form.

Figure 7. Part of the cone defined by $z^{2}=x^{2}+y^{2}$.
2.6. Möbius strip. A Möbius strip can be parameterized by

$$
\boldsymbol{x}(t, \theta)=(2+t \cos (\theta / 2)) \boldsymbol{e}_{1}(\theta)+t \sin (\theta / 2) \boldsymbol{e}_{3} .
$$

See Figure 8
Problem 9. Compute the first fundamental of this Möbius strip.

Figure 8. A Möbius strip.
2.7. Tubes around curves. Let $\boldsymbol{c}:[a, b] \rightarrow \mathbb{R}^{3}$ be a unit speed curve and let $r>0$. Then the tube of radius r about \boldsymbol{c} is the curve parameterized by

$$
\boldsymbol{x}(s, t)=\boldsymbol{c}(s)+r \cos (t) \boldsymbol{n}(s)+r \sin (t) \boldsymbol{b}(s) .
$$

Problem 10. As a refresher about using the Frenet formulas, compute the first fundamental form of this tube.

