Mathematics 551 Homework.

Contents

1.	The second fundamental form.	1
2.	Examples	1
2.1.	. Monge patches	1
2.2.	. Cylinders	2
2.3.	. Rotating frames	2
2.4.	. Helicoids	2
2.5.	. Surfaces of revolution	3
2.6.	. Tubes around curves	3

1. The second fundamental form.

If $\pmb{x} \colon U \to \mathbb{R}^3$ is a local parameterization of a surface, then the unit normal is

$$oldsymbol{n} = rac{oldsymbol{x}_u imes oldsymbol{x}_v}{\|oldsymbol{x}_u imes oldsymbol{x}_v\|}.$$

Then the *second fundamental form* is the quadratic form

$$\mathbf{I} = L \, du^2 + 2M \, du dv + N \, dv^2$$

where

$$L = \boldsymbol{x}_{uu} \cdot \boldsymbol{n}, \quad M = \boldsymbol{x}_{uv} \cdot \boldsymbol{n}, \quad \boldsymbol{x}_{vv} \cdot \boldsymbol{n}.$$

In this homework, you compute the normal, \boldsymbol{n} the second fundamental form for some of the examples we look at in a previous example.

2. Examples

2.1. Monge patches. . Here is what is the most basic example. Let $U \subseteq \mathbb{R}^2$ be an open set and $f: U \to \mathbb{R}$. Then

$$\boldsymbol{x}(u,v) = (u,v,f(u,v))$$

for $(u, v) \in U$ parameterizes the graph of f. Such a parameterization is called a *Monge patch*.

Problem 1. Find the unit normal and the second fundamental form for a Monge patch. \Box

Problem 2. Assume that $f(0,0) = f_u(0,0) = f_v(0,0)$ and $f_{uu}(0,0) = a$, $f_{u,v}(0,0) = 0$, and $f_{vv}(0,0) = b$. What is **I** at the origin?

2.2. Cylinders. Let c(s) = (x(t), y(t)) with $a \leq s \leq b$ be curve in the plane. Then the *cylinder* over this curve the surface parameterized by

$$\boldsymbol{x}(u,v) = (x(u), y(u), v).$$

This the union of the set of all lines parallel to the z-axis and intersect c. We have seen the first fundamental form is

$$I = (x'(u)^2 + y'(u)^2) du^2 + dv^2.$$

which reduces to

$$I = du^2 + dv^2.$$

when the curve is unit speed.

Problem 3. Assume the curve is unit speed and find $I\!I$. Your answer should involve the curvature of c.

2.3. Rotating frames. To save you having to look at the old homework, here are the formulas rotating frames. For $\theta \in \mathbb{R}$ define

$$\begin{aligned} \boldsymbol{e}_1(\theta) &= (\cos(\theta), \sin(\theta), 0) \\ \boldsymbol{e}_2(\theta) &= (-\sin(\theta), \sin(\theta), 0) \\ \boldsymbol{e}_3 &= (0, 0, 1). \end{aligned}$$

Formulas that will come up several times are

$$egin{aligned} m{e}_1'(heta) &= m{e}_2(heta) \ m{e}_2'(heta) &= -m{e}_1(heta) \ m{e}_3' &= 0. \end{aligned}$$

. .

2.4. Helicoids. These have parameterization

$$\boldsymbol{x}(u,v) = v\boldsymbol{e}_1(u) + bu\boldsymbol{e}_3$$

where b is a constant.

Problem 4. Compute the second fundamental form of the helicoid \Box

FIGURE 1. A part of the helicoid $\boldsymbol{x}(u, v) = (v \cos(u), v \sin(u), u)$.

2.5. Surfaces of revolution. Let $U = \{(x, y) : u > 0\}$ be the right half plane in the x-y plane and let. Let

$$\boldsymbol{c}(t) = (\boldsymbol{x}(t), \boldsymbol{y}(t))$$

be a curve in U (so that x(t) > 0. Then the surface we get by rotating revolving this curve around the y axis is parameterized

$$\boldsymbol{x}(t,\theta) = x(t)\boldsymbol{e}_1(\theta) + y(t)\boldsymbol{e}_3$$

where we have taken a break from using u and v as the parameter names. Examples of surfaces of revolution are in Figures 2 and 3

Problem 5. Assume the curve \boldsymbol{c} is unit speed. Compute the second fundamental form of \boldsymbol{x} . Your answer should involve the curvature of \boldsymbol{c} .

FIGURE 2. The torus formed by revolving the circle $(x - 3)^2 + y^2 = 1$ about the *y*-axis.

FIGURE 3. Part of the catenoid formed by revolving $x = \cosh(y)$ around the y axis.

2.6. Tubes around curves. Let $\boldsymbol{c} \colon [a,b] \to \mathbb{R}^3$ be a unit speed curve and let r > 0. Then the *tube of radius* r about \boldsymbol{c} is the curve parameterized by

$$\boldsymbol{x}(s,t) = \boldsymbol{c}(s) + r\cos(t)\boldsymbol{n}(s) + r\sin(t)\boldsymbol{b}(s).$$

Problem 6. Find $I\!I$ for this x.