Mathematics 551 Homework.

Contents

1. The second fundamental form. 1
2. Examples 1
2.1. Monge patches 1
2.2. Cylinders 2
2.3. Rotating frames 2
2.4. Helicoids 2
2.5. Surfaces of revolution 3
2.6. Tubes around curves 3

1. The second fundamental form.

If $\boldsymbol{x}: U \rightarrow \mathbb{R}^{3}$ is a local parameterization of a surface, then the unit normal is

$$
\boldsymbol{n}=\frac{\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}}{\left\|\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right\|} .
$$

Then the second fundamental form is the quadratic form

$$
I I=L d u^{2}+2 M d u d v+N d v^{2}
$$

where

$$
L=\boldsymbol{x}_{u u} \cdot \boldsymbol{n}, \quad M=\boldsymbol{x}_{u v} \cdot \boldsymbol{n}, \quad \boldsymbol{x}_{v v} \cdot \boldsymbol{n} .
$$

In this homework, you compute the normal, \boldsymbol{n} the second fundamental form for some of the examples we look at in a previous example.

2. Examples

2.1. Monge patches. . Here is what is the most basic example. Let $U \subseteq$ \mathbb{R}^{2} be an open set and $f: U \rightarrow \mathbb{R}$. Then

$$
\boldsymbol{x}(u, v)=(u, v, f(u, v))
$$

for $(u, v) \in U$ parameterizes the graph of f. Such a parameterization is called a Monge patch.

Problem 1. Find the unit normal and the second fundamental form for a Monge patch.

Problem 2. Assume that $f(0,0)=f_{u}(0,0)=f_{v}(0,0)$ and $f_{u u}(0,0)=a$, $f_{u, v}(0,0)=0$, and $f_{v v}(0,0)=b$. What is II at the origin?
2.2. Cylinders. Let $\boldsymbol{c}(s)=(x(t), y(t))$ with $a \leq s \leq b$ be curve in the plane. Then the cylinder over this curve the surface parameterized by

$$
\boldsymbol{x}(u, v)=(x(u), y(u), v) .
$$

This the union of the set of all lines parallel to the z-axis and intersect \boldsymbol{c}. We have seen the first fundamental form is

$$
I=\left(x^{\prime}(u)^{2}+y^{\prime}(u)^{2}\right) d u^{2}+d v^{2} .
$$

which reduces to

$$
I=d u^{2}+d v^{2} .
$$

when the curve is unit speed.
Problem 3. Assume the curve is unit speed and find II. Your answer should involve the curvature of \boldsymbol{c}.
2.3. Rotating frames. To save you having to look at the old homework, here are the formulas rotating frames. For $\theta \in \mathbb{R}$ define

$$
\begin{aligned}
\boldsymbol{e}_{1}(\theta) & =(\cos (\theta), \sin (\theta), 0) \\
\boldsymbol{e}_{2}(\theta) & =(-\sin (\theta), \sin (\theta), 0) \\
\boldsymbol{e}_{3} & =(0,0,1) .
\end{aligned}
$$

Formulas that will come up several times are

$$
\begin{aligned}
\boldsymbol{e}_{1}^{\prime}(\theta) & =\boldsymbol{e}_{2}(\theta) \\
\boldsymbol{e}_{2}^{\prime}(\theta) & =-\boldsymbol{e}_{1}(\theta) \\
\boldsymbol{e}_{3}^{\prime} & =0 .
\end{aligned}
$$

2.4. Helicoids. These have parameterization

$$
\boldsymbol{x}(u, v)=v \boldsymbol{e}_{1}(u)+b u \boldsymbol{e}_{3}
$$

where b is a constant.
Problem 4. Compute the second fundamental form of the helicoid

Figure 1. A part of the helicoid $\boldsymbol{x}(u, v)=(v \cos (u), v \sin (u), u)$.
2.5. Surfaces of revolution. Let $U=\{(x, y): u>0\}$ be the right half plane in the $x-y$ plane and let. Let

$$
\boldsymbol{c}(t)=(x(t), y(t))
$$

be a curve in U (so that $x(t)>0$. Then the surface we get by rotating revolving this curve around the y axis is parameterized

$$
\boldsymbol{x}(t, \theta)=x(t) \boldsymbol{e}_{1}(\theta)+y(t) \boldsymbol{e}_{3}
$$

where we have taken a break from using u and v as the parameter names. Examples of surfaces of revolution are in Figures 2 and 3

Problem 5. Assume the curve \boldsymbol{c} is unit speed. Compute the second fundamental form of \boldsymbol{x}. Your answer should involve the curvature of \boldsymbol{c}.

Figure 2. The torus formed by revolving the circle ($x-$ $3)^{2}+y^{2}=1$ about the y-axis.

Figure 3. Part of the catenoid formed by revolving $x=$ $\cosh (y)$ around the y axis.
2.6. Tubes around curves. Let $\boldsymbol{c}:[a, b] \rightarrow \mathbb{R}^{3}$ be a unit speed curve and let $r>0$. Then the tube of radius r about \boldsymbol{c} is the curve parameterized by

$$
\boldsymbol{x}(s, t)=\boldsymbol{c}(s)+r \cos (t) \boldsymbol{n}(s)+r \sin (t) \boldsymbol{b}(s)
$$

Problem 6. Find II for this \boldsymbol{x}.

