
Mathematics 551 Homework.

These problems will count for 50% of the test on Friday. The problems are
10 points each. For these problems I am less concerned with “assessment”
than with having you understand the material, which should be at least in
part review from your vector calculus classes. So you can look at whatever
sources you want, but you should do your own write up.

One of the topics we have not talked about is the area of surfaces. We
start with the example of a parameterized plane. Let P0 ∈ R3 and let a and
b be vectors in R3 with a× b 6= 0. Deriving the basic formula for the area
is based on the formula for the area of a parallelogram whose sides are the
vector v and w is

(1) Area of parallelogram = ‖v ×w‖.

If you want to review this here is a video that should help:
https://www.youtube.com/watch?v=W9dv3Vkf8mg

Define f : R2 → R3 by

f(u, v) = P0 + ua + vb.

Problem 1. Let N = a × b (this vector is orthogonal to both a and b).
Show that f satisfies

(f −P0) ·N = 0

and therefore f parameterizes a plane. �

Now let us consider the rectangle

R = {(u, v) : u0 ≤ u ≤ u0 + ∆u, v0 ≤ v ≤ v0 + ∆v}

where ∆u and ∆v are positive numbers. The image of this rectangle under
f is parallelogram defined by

P = {P0 + ua + vb : u0 ≤ u ≤ u0 + ∆u, v0 ≤ v ≤ v0 + ∆v}

https://www.youtube.com/watch?v=W9dv3Vkf8mg
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f(u0, v0)

f(u0 + ∆u, v0)

f(u0, v0 + ∆v)

f(u0 + ∆u, v0 + ∆v)

Problem 2. The sides of this parallelogram are the vectors

f(u0 + ∆u, v0)− f(u0, v0) = ∆ua

f(u0, v0 + ∆v)− f(u0, v0) = ∆v b

(a) Use Equation (1) to show the area of this parallelogram is

A = ‖a× b‖∆u∆v.

(b) Show that the partial derivatives of f are

fu = a fv = b

and therefore the area of the parallelogram can be written as

A = ‖fu × fv‖∆u∆v.

That is the area of the image of the parallelogram is obtained by
multiplying the area of the rectangle by the number ‖a× b‖.

(c) Letting R explain why the area A can also be written as

A =

∫∫
R
‖fu × fv‖ du dv.

Hint: As ‖fu×fv‖ is constant this case, follows from basic the formula∫∫
D c du dv = cArea(D) where D is any bounded domain and c is a

constant (you can assume this formula). We write the area in this
form as it is the form that generalizes to curved surfaces. �
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Now consider a bounded region R in the uv-plane. We want to compute
the area of the image of R under the map f . We have just seen how to do
this when the region is a rectangle with its sides parallel to the axes. For a
general region, R, choose small positive real numbers ∆u and ∆v fill it up
with a bunch of rectangles with sides of length ∆u and ∆v as shown:

The region R
“paved” with bricks

of size ∆u×∆v.

I like to think of this as having an irregular region in a yard that we want
to make into a patio by paving with bricks. For bricks of size ∆u×∆v we
will not be able to full up the region, but by using smaller and smaller bricks
we can get closer and closer to filling the region up.

To compute the are of the image, f [R], of R under f let R1, R2, . . . , Rn

be a paving of R by size ∆u ×∆v rectangles as in the above figure. If ∆u
and ∆v are small enough then these rectangle almost fill R and so also the
images f [R1], f [R2], . . . , f [Rn] almost fill the image f [R]. Therefore

Area(f [R]) ≈
n∑

j=1

Area(f [Rj ])

=

n∑
j=1

∫∫
Rj

‖fu × fv‖ du dv

≈
∫∫

R
‖fu × fv‖ du dv.

By taking the limit as both ∆u,∆v → 0 we arrive at

Area(f [R]) =

∫∫
R
‖fu × fv‖ du dv.

We now compute the area of a curved surface. To be concrete we look at
the surface M parameterized by the map x : [−1, 1]× [−1, 1]→ R3 by

x(u, v) = (u, v,−u+ 2v − 2u2 − 2v2).

Here is a picture:
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To get a first approximation of the area pave the rectangle R = [−1, 1]×
[−1, 1] with 16 bricks of size ∆u×∆v = .5× .5:

−1 −.5 0 .5 1
−1

−.5

0

.5

11

R00 R10 R20 R30R30

R01R01 R11 R21 R31

R02 R12 R22 R32

R03 R13 R23 R33

Let for 0 ≤ j, k ≤ 3 let Rjk be the sub-rectangle (i.e. brick)

Rjk = [−1 + .5j,−1 + .5(j + 1)]× [−1 + .5k,−1 + .5(k + 1)]

and let
Pjk = (−1 + .5j,−1 + .5k] = (aj , bk)

be the lower left corner of this rectangle (and this defines aj and bk). These
rectangles are shown in the figure above. The images of these little rectangles
on the surface M look like:
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The tangent plane to M at the point x(Pjk) = x(aj , bk) is parameterized
by the linear map

fjk(u, v) = x(aj , bk) + xu(aj , bk)(u− aj) + xv(aj , bk)(v − bk).

Then if the rectangles are small, then the image fjk[Rjk] will be close to the
image x[Rjk]. Here is a picture of the image x[R] = M together will all of
the images fjk[Rjk].

Hopefully this figure shows that the area of the surface M is very close
to the area of the little red parallelograms that are tangent to it. Since the
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maps fjk are linear know from our work above that

Area(fjk[Rjk]) =

∫∫
Rjk

‖xu(aj , bk)× xv(aj , bk)‖ du dv.

Adding these up gives

Area(M) ≈
∑
j,k

∫∫
Rjk

‖xu(aj , bk)× xv(aj , bk)‖ du dv.

But when (u, v) ∈ Rjk the point (u, v) is close to (aj , bk) and therefore∫∫
Rjk

‖xu(aj , bk)× xv(aj , bk)‖ du dv ≈
∫∫

Rjk

‖xu(u, v)× xv(u, v)‖ du dv

So we end up with

Area(M) ≈
∑
j,k

∫∫
Rjk

‖xu(u, v)× xv(u, v)‖ du dv

=

∫∫
R
‖xu(u, v)× xv(u, v)‖ du dv.

By making the paving rectangles smaller and smaller (that is taking a limit)
we end up with

Theorem 1. Let x : U → R3 be a C2 regular map. Then the area of the
image of x is

Area(x[U ]) =

∫∫
U
‖x(u, v)× x(u, v)‖ du dv. �

Now that we use this to find some areas.

Problem 3. Let U ⊆ R2 be a bounded open set and f : U → R a C2

function. Then the graph of f is parameterized by

x(x, y) = (x, y, f(x, y)).

Show that the area of this graph is given by

Area =

∫∫
U

√
1 + f2x + f2y dx dy. �

In some of the following problems we will using the notation and formulas
(which we have used before)

e1(t) = (cos(t), sin(t), 0)

e2(t) = (− sin(t), cos(t), 0)

e3(t) = (0, 0, 1)

e′1(t) = e2(t)

e′2(t) = e1(t)

e′3(t) = 000.
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Problem 4. You very likely looked at the area of surfaces of revolution in
calculus. Here we look at this from the point of view of Theorem 1. . Let

c(u) = (x(u), y(u))

with x(u) > 0 and a < u < b be a C2 curve in the plane. Define

f(u, v) = x(u)e1(v) + y(u)e3 a < u < b 0 ≤ v ≤ 2π

This is the result of revolving c around the y-axis in R3. Show that

fu × fv = x(u)
(
−y′(u)e1(v) + x′(u)e3

)
and therefore the area of the surface of revolution is

A = 2π

∫ b

a
x(u)

√
x′(u)2 + y′(u)2 du �

Problem 5. Here is more interesting example. Let c : [0, L] : R3 be a unit
speed curve in R3 and let r > 0 be a positive number such that the curvature
of c satisfies κ(s) < 1/r where κ is the curvature of c. (Since c is unit speed
L is the length of the curve.) Then the tube of radius r around c is the
surface parameterized by

f(s, t) = c(s) + r(cos(t)n(s) + sin(t)b(s))

where 0 ≤ s ≤ L and 0 ≤ t ≤ 2π. Here is a picture of the tube of radius
r = 1/4 about the helix

c(s) =
(

cos(s/
√

2), sin(s/
√

2), s/
√

2
)
, 0 ≤ s ≤ 5.

Show
‖fs × ft‖ = |1− r cos(t)κ(s)|

and use that κ < 1/r to show 1− r cos(t)κ(s) is positive and therefore

‖fs × ft‖ = 1− r cos(t)κ(s)
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(i.e. the absolute values are not needed). Use this to show

A = 2πrL.

This is a little surprising, as the area only depends on the length of the
curve, and not on its curvature and/or torsion. �


