
Mathematics 551 Homework.

One or our basic formulas is that for vector fields VVV ,WWW on a surface M
that

DVVVWWW = ∇VVVWWW + II(VVV ,WWW )nnnk

where ∇VVVWWW is the component of DVVVWWW tangent to M . In terms of a local
parameterization, xxx(u, v) this is

Dxxxuxxxv =
∂

∂u
xxxv = ∇xxxuxxxv + II(xxxu,xxxv)nnn.

If ccc(s) ∈M is a curve in M , then this specializes to

ccc′′(s) = ∇ccc′(s) + II(ccc′(s), ccc′(s))nnn.

Assume that ccc is unit speed and that its curvature as a space curve is κ, so
that by the Frenet formulas we have

ccc′′(s) = κ(s)NNN

where NNN is the principle normal to ccc. Note that as ∇ccc′(s)ccc′(s) ∈ Tccc(s)M that
∇ccc′(s)ccc′(s) ···nnn = 0.

Theorem 1. With this notation

II(ccc′(s), ccc′(s)) = κ(s)nnn ···NNN = κ(s) cos(θ)

where θ the angle between nnn and NNN . Thus

A ruled surface , M , is a surface such that for each p ∈ M there is a
line of R3 through p and contained in M . The lines are in M are called
the rulings of M . For pictures of models of ruled surfaces made with
wire look here. For more pictures and see the artcle Ruled surfaces and
developable surfaces where Johannes Wallner discusses applications (mostly
to architecture) of ruled surfaces.

The most obvious (and least interesting) examples are the planes.
Anther set of examples are the cylinders. The official definition of a

cylinder is a ruled surface where all the rulings are parallel in R3. For an
example Let ccc(s) = (x(s), y(s)) be a curve in R2. Then

xxx(s, z) = (x(s), y(s), z)

is a cylinder, with all the rulings being parallel to the z-axis.

Problem 1. Not all examples are so obvious. For the surface, M , defined
by

x2 + y2 − z2 = 1

show that for any α ∈ R both of the lines

cccα,±(t) = (cos(α)− t sin(α), sin(α) + t cos(α),±t)
are on M . Thus M is note only ruled but is doubly rule . Hint: One way
to do this is just the obvious plug and chug. But as this is at least partly a
geometry class, let us try to give a more geometry argument. The surface

https://www.math.arizona.edu/~models/Ruled_Surfaces/index.html
https://www.geometrie.tugraz.at/wallner/kurs.pdf
https://www.geometrie.tugraz.at/wallner/kurs.pdf
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M is invariant under rotations about the z axis, a fact we will consider
geometrically evident and you do not have the prove. The rotation by α
about the z axis has matrix

R(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 .
(Again you do not have to prove this.) When α = 0 these the lines simplify
to

ccc±(t) =

 1
t
±t


and it is more or less obvious (or at least an easy calculation) to see these
are on M . (We have written this as a column vector as this is what plays
well with matrix multiplication.) As R(α) is linear, the curves R(α)ccc± are
lines in R3 and Since M is invariant under R(α) the lines R(α)ccc± on M .
Now just check that

R(α)ccc±(t) = cccα,±(t)

(again writing the vectors as columns). �

Problem 2. For a more challenging problem show that the surface z = xy
is also doubly ruled. Feel free to ask for a hint in class if starts to look too
complicated. �

A general ruled surface can be parameterized as

xxx(u, v) = ccc(v) + ubbb(v)

There are several cases. The first is that bbb′ ≡ 0. Then bbb is constant and we
have seen that in appropriate coordinates this implies

xxx(u, v) = (x(v), y(v), u)

or in what maybe more natural coordinates

xxx(s, z) = (x(s), y(s), z)

and we can choose the curve (x(s), y(s)) to be unit speed.
So form now on we assume that bbb′(v) 6= 000 for all v. We have shown that

we can choose the curve ccc with the property

(1) 〈ccc′(v), bbb′(v)〉 = 0

along ccc. This curve is the line of striction and is uniquely defined (up to
reparameterization) by (1).

A case where (1) holds is when ccc′(v) ≡ 000. That is when ccc(v) is constant.
Then by translation we can assume that ccc = 000 is the origin of R3. Then

xxx(u, v) = ubbb(v).

We can reparameterize bbb to be unit speed.
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Problem 3. Let bbb : [a, b] → S2 (where S2 = {vvv ∈ R3 : ‖vvv‖ = 1}) be a unit
speed curve and define xxx : R× [a, b]→ R3 by

xxx(u, v) = ubbb(v).

(a) We have

xxxu = bbb(v), xxxv = ubbb(v).

Note that as bbb(v) and bbb′(v) are both unit vectors and bbb⊥bbb′ (which follows
from by taking the derivative of 〈bbb, bbb〉 ≡ 1) and thus the cross product
bbb× bbb′ is a unit vector. Use this to show

nnn(u, v) = bbb(v)× bbb′(v)

is a unit normal to the surface.
(b) Show that if S is the shaper operator defined by nnn, that

Sxxxu = 000

and therefore one principal curvature κ1 = 0 and xxxu is a principal di-
rection of M .

(c) Show

Sxxxv = − ∂

∂v
nnn = −bbb(v)× bbb′′(v).

But, as bbb is unit speed the we have bbb′′⊥bbb, bbb′ and therefore bbb(v)× bbb′(v) =
λ(v)bbb′′(v) for some scalar function λ. Use that bbb′(v) is a unit vector to
show

λ(v) = 〈bbb′(v), bbb(v)× bbb′′〉
and thus

Sxxxv = −λ(v)bbb′(v).

(d) Use what we have just shown to show

Sxxxv = − λ(v)

u
xxxv

and thus that the other principal curvature is

κ2(v) = − λ(v)

u

and that xxxv is a principal direction of M . �

So we now add the assumption that

ccc′(v) 6= 0

in our parameterization

xxx(u, v) = ccc(s) + ubbb(v).

Then

xxxu = bbb(v), xxxv = ccc′(v) + ubbb′(v).

Thus

xxxu × xxxv = bbb(v)× ccc′(v) + ubbb(v)× bbb′(v).
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By our assumption that ccc is the line of striction we have ccc′⊥bbb′ and as ‖bbb‖ = 1
we also have bbb⊥bbb′. Therefore bbb′ is orthogonal to both of bbb and ccc′ and therefore
it points in the same direction as ccc′⊥bbb′ (as ccc′⊥bbb′ is also orthogonal to both
bbb and ccc′). Therefore

bbb(v)× ccc′(v) = λ(v)bbb′(v)

for some scaler valued function λ (which is not the same as the λ above).
Thus we now have

xxxu × xxxv = λ(v)bbb′(v) + ubbb(v)× bbb′(v).

Note that bbb′ and bbb× bbb′ are orthogonal and bbb is a unit vector. Therefore

‖xxxu × xxxv‖2 = λ(v)2‖bbb′‖2 + u2‖bbb(v)× bbb′(v)‖2 = (λ(v)2 + u2)‖bbb′(v)‖2.

Problem 4. Recall that a parameterization, xxx, of a surface is regular if and
only if xxxu × xxxv 6= 000. We are assuming bbb′ 6= 000 and so we have xxxu × xxxv 6= 0 if
and only if

λ(v)2 + u2 6= 0.

Show this only happens when u = 0 (which means we are on the line of
striction) and λ(v) = 0. Also show λ(v) = 0 if and only if bbb(v)×ccc′(v) = 000. �

Problem 5. So we now have anther special case to consider, that is ccc′ 6= 000,
but ccc′ × bbb ≡ 000. If this is the case it means that ccc′ and bbb point in the same
direction. Thus we can parameterize M by

yyy(s, t) = ccc(s) + tccc′(s).

Such a surface is called a tangent developable . Show this has Gauss
curvature, K = 0 at all point not on ccc. Hint: Assume that ccc is unit speed
and use the Frenet formulas. �


