
Notes on hyperbolic functions.

The hyperbolic functions cosh and sinh are generally introduced by

cosh(x) =
ex + e−x

2

sinh(x) =
ex − e−x

2

and most of the properties of these function determined directly from the
properties of ex. Here I will show it is as easy, maybe easier to deduce the
properties of the hyperbolic functions from the fact they are a fundamental
set of solutions for a differential equation. It follows from the definitions
above that

cosh′′(x) = cosh(x) cosh(0) = 1 cosh′(0) = 0

sinh′′(x) = sinh(x) sinh(0) = 0 sinh′(0) = 0

The following is a special case of a much more general result uniqueness
about linear second order differential equations.

Theorem 1. Let f : R→ R be a twice differentiable function that satisfies

f ′′(x) = f(x)

then is a linear combination of cosh and sinh, more exactly

f(x) = f(0) cosh(x) + f ′(0) sinh(x). �

Proposition 2. The derivatives of cosh and sinh are

cosh′(x) = sinh(x)

sinh′(x) = cosh(x)

Also cosh is an even function and sinh is an odd function:

cosh(−x) = cosh(x), sinh(−x) = − sinh(x).

Proof. While this is follows easily from the definitions I prove it form The-
orem 1 as warm up for more complicated formulas. Let f = cosh. Then

f ′′ = f, f(0) = 0, f ′(0) = 1.

Let g = f ′. Then

g′′ = (f ′)′′ = f ′′′ = (f ′′)′ = f ′ = g

and
g(0) = f ′(0), g′(0) = f ′′(0) = f(0) = 1.

Therefore Theorem 1 implies

g(x) = g(0) cosh(x) + g′(0) sinh(x) = 0 cosh(x) + 1 sinh(x) = sinh(x).

As g = f ′ = cosh′ we have shown cosh′ = sinh.
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Likewise if we set g = sinh′ similar calculations show g′′ = g, g(0) = 1,
and g′(0) = 0 and therefore Theorem gives

sinh′(x) = g(0) cosh(x) + g′(0) sinh(x) = 1 cosh(x) + 0 sinh(x) = cosh(x).

Let f(x) = cosh(−x). Then f ′(x) = − sinh(−x) and f ′′(x) = cosh(−x) =
f(x). Thus f ′′(x) = f(x), f(0) = cosh(0) = 1 and f ′(0) = − sinh(0) = 0.
Thus, Theorem 1 again,

cosh(−x) = f(x) = f(0) cosh(x) + f ′(0) sinh(x) = cosh(x).

If f(x) = sinh(−x), then again f ′′ = f , but this time f(0) = 0 and
f ′(0) = − cosh(−0) = −1 and

sinh(−x) = f(x) = f(0) cosh(x) + f ′(0) sinh(x) = − sinh(x).

�

Proposition 3. The identity

cosh2(x)− sinh2(x) = 1

holds.

Proof. Let
E(x) = cosh2(x)− sinh2(x).

Then by the derivative formulas

kE′(x) = 2 cosh(x) cosh′(x)− 2 sinh(x) sinh′(x)

= 2 cosh(x) sinh(x)− 2 sinh(x) cosh(x)

= 0

Thus E is constant. As E(0) = cosh2(0)− sinh2(0) = 1, the constant value
is 1, as required. �

This implies the hyperbola

x2 − y2 = 1

is parameterized by
c(t) = (cosh(t), sinh(t)).

More generally
(x− x0)

2

a2
− (y − y0)

2

b2
= 1

is parameterized by

x(t) = x0 + a cosh(t)

y(t) = y0 + b sinh(t)

Proposition 4. The addition formulas

cosh(a + b) = cosh(a) cosh(b) + sinh(a) sinh(b)

sinh(a + b) = sinh(a) cosh(b) + cosh(a) sinh(b)

hold.
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Proof. Let

f(x) = cosh(a + x).

Then

f ′′(x) = cosh′′(a + x) = cosh(a + x) = f(x)

and

f(0) = cosh(a), f ′(0) = cosh′(a) = sinh(a).

Therefore by Theorem 1

cosh(a + x) = f(x) = f(0) cosh(x) + f ′(0) sinh(x)

= cosh(a) cosh(x) + sinh(a) cosh(x)

Letting = a gives the addition for cosh. A similar argument using f(x) =
sinh(a + x) gives the addition formula for sinh. �

Corollary 5. The double angle formulas hold:

cosh(2x) = cosh2(x) + sinh2(x)

sinh(2x) = 2 sinh(x) cosh(x).

Proof. Let a = b = x in the addition formulas. �

Using cosh2− sinh2 = 1 the double angle formula for cosh can also be
written as

cosh(2x) = 2 cosh2(x)− 1 = 1 + 2 sinh2(x).

This implies the hyperbolic versions of the half angle formulas. Rearranging
these gives

cosh2(x) =
cosh(2x) + 1

2

sinh2(x) =
cosh(2x)− 1

2

Sometimes the version of these with x replaced by x/2,

cosh2(x/2) =
cosh(x) + 1

2

sinh2(x/2) =
cosh(x)− 1

2

can be of use when doing integrals.
To finish up these notes we do some integrals using hyperbolic substations.

Some of these can also be done with trigonometric substations. To start note
that the derivative formulas for cosh and sinh imply∫

cosh(x) dx = sinh(x) + C∫
sinh(x) dx = cosh(x) + C
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Example 6. Compute

∫ √
x2 + 1 dx. Let x = sinh(t). Then dx = cosh(t) dt.

Therefore (using various of the identities above)

∫ √
x2 + 1 dx =

∫ √
1 + sinh2(t) cosh(t) dt

=

∫ √
cosh2(t) cosh(t) dt

=

∫
cosh2(t) dt

=

∫ (
cosh(2t) + 1

2

)
dt

=
1

2

(
sinh(2t)

2
+ t

)
+ C

=
1

2

(
2 sinh(t) cosh(t)

2
+ t

)
+ C

=
1

2
(sinh(t) cosh(t) + t) + C

=
1

2

(
x
√

x2 + 1 + arcsinh(x)
)

+ C

where we have used that x = sinh(t) implies cosh(t) =
√
x2 + 1.

Example 7. Compute the integral

∫ √
x + 1

x− 1
dx. To start use the formulas

for cosh2(x) and sinh2(x) above to get

cosh(t) + 1

sinh(t)− 1
=

cosh2(t/2)

sinh2(t/2)
.
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This suggests doing the substation x = cosh(t), dx = sinh(t) dt and again
using several of the formulas above∫ √

x + 1

x− 1
dx =

∫ √
cosh2(t/2)

sinh2(t/2)
sinh(t) dt

=

∫ (
cosh(t/2)

sinh(t/2)

)
sinh(t) dt

=

∫ (
cosh(t/2)

sinh(t/2)

)
2 sinh(t/2) cosh(t/2) dt

= 2

∫
cosh2(t/2) dt

= 2

∫ (
cosh(t) + 1

2

)
dt

= sinh(t) + t + C

=
√

x2 − 1 + arccosh(x) + C.


