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Abstract. We prove that an ordered field is Archimedean if and only if every
continuous additive function from the field to itself is linear over the field.

In 1821 Cauchy, [1], observed that any continuous function S on the real line
that satisfies

S(x+ y) = S(x) + S(y) for all reals x and y

is just multiplication by a constant. Another way to say this is that S is a linear
operator on R, viewing R as a vector space over itself. The constant is evidently
S(1). The displayed equation is Cauchy’s functional equation and solutions to this
equation are called additive. To see that Cauchy’s result holds, note that only
a small amount of work is needed to verify the following steps: first S(0) = 0,
second S(−x) = −S(x), third S(nx) = S(x)n for all integers, and finally that
S(r) = S(1)r for every rational number r. But then S and the function x 7→ S(1)x
are continuous functions that agree on a dense set (the rationals) and therefore are
equal. So Cauchy’s result follows, in part, from the fact that the rationals are dense
in the reals. In 1875 Darboux, in [2], extended Cauchy’s result by noting that if an
additive function is continuous at just one point, then it is continuous everywhere.
Therefore the conclusion of Cauchy’s theorem holds under the weaker hypothesis
that S is just continuous at a single point. In 1905 Hamel, in [5], showed Cauchy’s
result was nontrivial by proving the existence of discontinuous additive functions
f : R→ R.

The field of real numbers is an ordered field. In general, a field F is ordered by
a 2-place relation ≤ provided each of the following properties holds:

• the relation ≤ is a linear ordering of F,
• for all x, y, z, and w in F, if x ≤ y and z ≤ w, then x+ z ≤ y + w, and
• for all x, y, and z in F, if x ≤ y and 0 ≤ z, then xz ≤ yz.

Every ordered field has characteristic 0, allowing us to regard the field of rational
numbers, Q, as a subfield.

If F is a field ordered by ≤, then, exactly analogous to the real numbers, it has the
order topology (which has as a base the open intervals (a, b) := {x ∈ F : a < x < b}).
A function f : F→ F is continuous with respect to this topology at a ∈ F if and only
if the usual ε-δ definition holds. That is, for all ε ∈ F with ε > 0, there is a δ ∈ F
with δ > 0 such that |x− a| < δ implies |f(x)− f(a)| < ε. (Here |x| = max{x,−x}
is the absolute value defined by the order on F.)

An ordered field F is Archimedean provided any one (and hence all) of the fol-
lowing logically equivalent conditions holds:

(a) For every x in F, if 0 < x, then there is a positive integer n so that 0 <
1/n < x.
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(b) The set of rationals is dense in F.
(c) The ordered field F is embeddable into the ordered field of real numbers.

(Proofs of the equivalence of the equivalence of the third condition with the first
two be found in [4, Theorem 3.5] or [9, Section 4].)

Observe that the failure of condition (a) asserts the existence of some nonzero
element ε of F so that 0 ≤ |ε| < 1/n for every positive integer n. An element ε
that satisfies those inequalities is called an infinitesimal. So 0 is infinitesimal and
the failure of (a) asserts the existence of a nonzero infinitesimal. There are non-
Archimedean ordered fields. Perhaps the most familiar is the field R(x) of rational
functions with real coefficients. This field is ordered by the relation v of eventual
domination. That is, given rational functions f and g we put

f v g if and only if f(x) ≤ g(x) for all large enough values of x.

The rational function 1/x is an infinitesimal in this ordered field. Actually, the
class of ordered fields is rich in such examples and a large part of the theory of
ordered fields concerns those that are not Archimedean.

The geometric form of the Archimedean property is the Axiom of Archimedes:
Given two segments there is a positive integer, n, such that the longer segment can
be divided into n equal pieces of length less than the shorter segment. Archimedes
attributes this to Eudoxus of Cnidus who used it to justify the method of exhaus-
tion. The first examples of non-Archimedean geometries and fields were given by
David Hilbert in his book on the foundations of geometry [6] in 1899.

Recently there has been renewed interest in Archimedean fields and their charac-
terizations. The survey paper [3] of Deveau and Teismann contains 42 statements
about an ordered field that are equivalent to the field being Archimedean (and
72 statements equivalent to it being complete). In [9] Propp considers the Ax-
iom of Archimedes in the context of “reverse mathematics.” Other recent results
about Archimedean fields are given in [4, 8, 10, 11] and our preprint [7] where a
generalization of the result given here is proved.

Here we show that Cauchy’s result is also equivalent to the Archimedean prop-
erty. First a bit of notation. An ordered field F is also a vector space over the
rational numbers, denoted by FQ, and a vector space over itself, denoted by FF.

Theorem. Let F be an ordered field with its order topology. Then F is Archimedean
if and only if every continuous function on F that satisfies Cauchy’s functional
equation is a linear operator on FF.

Proof. In the case that F is Archimedean, the rational numbers are dense in F and
the argument given above works just as in the case when F = R.

For the converse, let F be a non-Archimedean ordered field. We will construct a
continuous additive function, T , on F that is not linear on FF. We will even show
that T can be taken to be bijective. It is somewhat ironic that the idea of the proof
is based on the method Hamel used in [5] to show that there are discontinuous
solutions to Cauchy’s equation on R.

Let I be the set of infinitesimals in F, that is, the set of x ∈ F such that |x| < 1/n
for all natural numbers n. As F is non-Archimedean, the set I 6= {0}. Both FQ and
I are vector spaces over Q. Let B1/∞ be a basis for I. Since 1 is not infinitesimal,
B1/∞ ∪ {1} is linearly independent. (If 1 were linearly dependent on elements of
I with coefficients from the rationals, then it would be an infinitesimal.) Extend
B1/∞ ∪ {1} to a basis B of F over Q.
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For all a ∈ F, define T (a) to be the coefficient of 1 in the representation of a as
a linear combination of elements of B. So T is a linear operator on FQ. From the
definition, T (b) = b for all b ∈ Q and T (ε) = 0 for all infinitesimals ε.

Since T is a linear map on FQ, it satisfies Cauchy’s functional equation. We need
to show that T is not linear on FF. If T were linear on FF, then for any nonzero
ε ∈ I, one would have 0 = T (ε) = εT (1) = ε, a contradiction.

It remains to show that the map T is continuous. As noted before, T (u) = 0 for
all u ∈ I. Because I 6= {0}, there is a δ ∈ I with δ > 0. Let a ∈ F and let ε be
any positive element of F. If x ∈ F and |x − a| < δ, then x − a ∈ I and therefore
T (x− a) = 0. Thus by additivity,

|x− a| < δ implies |T (x)− T (a)| = |T (x− a)| = 0 < ε.

Whence T is not only continuous, but uniformly continuous. �

This map T constructed in the proof is not injective. To see that there is a
bijective example, let a, b ∈ Q and define Ta,b : F→ F as

Ta,b(x) = aT (x) + bx for all x ∈ F.
Each Ta,b is continuous and satisfies Cauchy’s functional equation. Recalling that
T is a linear map over Q and using that a, b ∈ Q, it is easy to see that Tc,d is the
inverse of Ta,b, where c = −a/(b(a+ b)) and d = 1/b, provided b(a+ b) 6= 0. So, for
example, T1,1(x) = T (x) +x is invertible and its inverse is T− 1

2 ,1
(x) = − 1

2T (x) +x.

But if a 6= 0, then Ta,b is not linear on FF, for if it were, then

T =
1

a
(Ta,b − bI)

would be linear on FF and we have already seen this is not the case.
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