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Abstract. We prove explicit bounds on the number of lattice points on
or near a convex curve in terms of geometric invariants such as length,
curvature, and affine arclength. In several of our results we obtain the
best possible constants. Our estimates hold for lattices more general
than the usual lattice of integral points in the plane.

1. Introduction

Our goal in this paper is to give explicit and as sharp as possible bounds on
the number of lattice points on or near a convex curve in terms of geometric
invariants such as length, curvature, and affine arclength for lattices more
general than the usual lattice of integral points in the plane.

Definition 1.1. Let v0, v1, v2 ∈ R2 be vectors with v1 and v2 linearly in-
dependent. Then, the lattice generated by v1 and v2 with origin v0
is

L = L(v0, v1, v2) = {v0 +mv1 + nv2 : m,n ∈ Z}.
Note that the elements of such a lattice need not have integral or even

rational components. An invariant of a lattice is the area spanned by v1 and
v2

AL := |v1 ∧ v2|
where v1 ∧ v2 is the determinant of the of the 2× 2 matrix with columns v1
and v2.

If C is a curve of differentiability class C2 and whose curvature κ is posi-
tive, then the total curvature of C is

τττ(C) :=

∫
C
κ ds

where s is arclength along C and the radius of curvature of C is ρ = 1/κ.
The following are representative of our results.

Theorem 1.2. Let C be a C2 curve with total curvature at most π and whose
radius of curvature has a lower bound ρ ≥ R for some positive constant R.
Let L be a lattice with

Length(C) ≤ 2(ALR)1/3.
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Then, C contains at most two points of L.

This generalizes a theorem of Schinzel (whose proof first appeared in the
paper [10, Lemma 2] of Zygmund) where C is an arc of a circle and the lattice
is Z2. In [2] Cilleruelo shows that when C is an arc of a circle centered at
the origin the sharp form of this inequality has the constant 2 replaced by
2 3
√

2. In our result, with more general lattices and more general curves, the
constant 2 is the best possible (see Remark 5.4 below.)

Theorem 1.3. Let C be a C2 curve with total curvature τττ(C) =
∫
C κ ds ≤ π

and whose radius of curvature satisfies ρ ≥ R1 for some R1 > 0. Then for
any lattice L

#(C ∩ L) < 2 +
Length(C)
(ALR1)1/3

If also ρ ≤ R2, then

#(C ∩ L) ≤ 2 +

(
R2 τττ(C)
ALR1

)1/3

Length(C)2/3

This result is close to optimal:

Theorem 1.4. Let L be a lattice and n ≥ 2 an integer. There is a convex
curve C that contains exactly n points of L, and lower and upper bounds

R1 = min
P∈C

ρ(P ), R2 = max
P∈C

ρ(P )

for the radius of curvature of C, so that both the inequalities

(1.1)
Length(C)
(R1AL)1/3

< n+ 2,

(
R2 τττ(C)
ALR1

)1/3

Length(C)2/3 < n+ 2

hold.

The foundational result in this subject is the 1926 paper, [8], of Jarńık
who proved that the number of integer points on a strictly convex closed
curve of length L > 3 does not exceed 3(2π)−1/3L2/3 + O

(
L1/3

)
and the

exponent and the constant of the leading term are best possible. Therefore,
the exponent 2/3 in Theorem 1.3 is as good as can be expected.

Using that the affine image of a lattice is a lattice, that every ellipse is
the affine image of a circle, and that affine arclength (defined in Section 5)
is also invariant under affine maps we can transfer results about circles to
results about ellipses. One such result is

Theorem 1.5. Let C be an arc on an ellipse with affine arclength Aff(C).
Then for any lattice L

#(C ∩ L) ≤ 2 +
Aff(C)
A

1/3
L

.
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We can also estimate the number of points close to a lattice. This involves
another invariant of a lattice L, the minimum distance between any two of
its points

dL = min{‖P −Q‖ : P,Q ∈ L and P 6= Q}.
Theorem 1.6. Let C be a convex arc with total curvature at most π with
radius of curvature bounded by R1 ≤ ρ ≤ R2. Let L be a lattice and δ > 0
with

δ < min

R1,
d2L

2(R2 + dL +
√

(R2 + dL)2 − d2L)


and

AL
2
− Lδ − 3

2
δ2 > 0.

Then,

#{Q ∈ L : dist(C, Q) < δ} < 2 +
L(

R1(AL − 2Lδ − 3δ2)
)1/3

where L = Length(C).
Theorems estimating the number of lattice points close to a curve are

more recent. In 1974 Swinnerton-Dyer improved the exponent in Jarńık’s
result for curves which are dilations of a fixed convex C3 curve. In 1989
Huxley [7] obtained upper bounds for the number of lattice points close to
the curve y = f(x), x ∈ [M, 2M ] assuming f satisfies certain smoothness
conditions. In particular, Huxley generalized Swinnerton-Dyer’s result. A
number of papers containing new upper bounds for the number of lattice
points close to a curve and applications to different arithmetic functions
ensued. For survey of such estimates and their applications see the papers
[5] and [6].

Most of our results are based on some new results on the differential
geometry of plane convex curves which are of interest on their own right.

Theorem 1.7. Let C be a C2 curve with positive curvature and total cur-
vature

∫
C κ ds ≤ π. If C intersects a circle of radius R in at least 3 points,

then there is a point on C with κ = 1/R.

The structure of this paper is as follows.
Section 2 gives basic facts about lattices and affine maps.
Section 3 contains basic estimates we will be using. The proofs here own

a lot to the ideas in the paper [3] of Cilleruelo and Granville.
Section 4 has the proofs of the differential geometric results we require.
Section 5 starts with results about the number of points on a circular arc

that are on a general lattice L. Then the affine invariance of the collection
of lattices and affine arclength under affine maps is used to transfer these
results to the case of lattice points on an arc of an ellipse. The results are
new even in the case of the lattice L = Z2.
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Section 6 has estimates on the number of points of a lattice L on a convex
curve in terms of AL and bounds on the length and curvature of the curve.

Section 7 contains estimates on the number of points of a lattice L within
δ of a convex arc in terms of AL, dL, and bounds on the length and curvature
of the curve.

In Section 8 we show that two of our results are close to being sharp.

2. Lattices and affine maps.

Definition 2.1. An affine map φ : Rn → Rn is a map of the form

φ(v) = Mv + b

where M is a non-singular linear map. Define

det(φ) = det(M).

The set of lattices is invariant under affine maps.

Proposition 2.2. Let φ : R2 → R2 be the affine map

φ(v) = Mv + b.

Then, the image of the lattice L(v0, v1, v2) under φ is

φ
[
L(v0, v1, v2)

]
= L(φ(v0),Mv1,Mv2))

and if L = L(v0, v1, v2) and L∗ = φ
[
L] is its image then

AL∗ = | det(φ)|AL.
This is straightforward and the proof is left to the reader.

Proposition 2.3. Let P0, P1, and P2 be three non-collinear points of L =
L(v0, v1, v2). Then, the area of the triangle 4P0P1P2 is an integral multiple
of AL/2 and therefore

Area(4P0P1P2) ≥
1

2
AL.

Proof. By the definition of the lattice L there are integers mj , nj with 0 ≤
j ≤ 2 so that

Pj = v0 +mjv1 + njv2.

Since translation does not change areas, we can assume P0 = v0. Then, the
area of 4P0P1P2 is

Area(4P0P1P2) =
1

2
|(P1 − P0) ∧ (P2 − P0)|

=
1

2
|(m1v1 + n1v2) ∧ (m2v1 + n2v2)|

= |m1n2 −m2n1|
AL
2

≥ AL
2

as |m1n2 −m2n1| ≥ 1 because it is an integer. �
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3. Conventions and basic geometric estimates.

All our curves will be of the differentiable class C2 with nonvanishing
first and second derivative vectors. If the orientation (direction of increasing
parameter) of a curve is is reversed, it changes the sign of the curvature. As
curves with nonvanishing second derivative have nonvanishing curvature, by
possibly changing the orientation of the curve, we can, and do, assume all
our curves have positive curvature. If we have a finite set of points F on C,
for example if #F = n, then we order the points F = {P1, P2, . . . , Pn} in
the order given by the orientation of the curve. This implies that Pj+1 is
between Pj and Pj+2.

Proposition 3.1. If 4P0P1P2 is a triangle and its vertices P0, P1, and P2

are on a circle C of radius R, then the area of the triangle is

Area(4P0P1P2) =
abc

4R

where a, b and c are the side lengths of the triangle. Also, the area satisfies
the inequality

Area(4P0P1P2) <
(a+ b)3

16R
.

Proof. The formula for the area is a result attributed to Heron of Alexandria
[4, Eq. 1.54 p. 13]. To prove the inequality, note c < a+ b as a, b and c are
the side lengths of a triangle. By the Arithmetic-Geometric mean inequality,
ab ≤ (a+ b)2/4 and therefore

Area(4P0P1P2) =
abc

4R
<

(
(a+ b)2/4

)
(a+ b)

4R
=

(a+ b)3

16R
.

�

The next two results are generalizations of results of Cilleruelo and Granville
[3] from circular arcs to more general curves. The proofs are basically ax-
iomatizations of their arguments.

Theorem 3.2 (Basic estimate for closed curves). Let C be a closed curve and
P1, P2, . . . , PN points on C listed in cyclic order around C with the convention
PN+1 = P1 and PN+2 = P2. Assume there are positive constants A0 and R0

such that

(a) For all j
A0

2
≤ Area(4PjPj+1Pj+2)

(b) For each j ∈ {1, 2, . . . , N} the points Pj, Pj+1, and Pj+2 are on a
circle of radius ≥ R0.

Then

N <
Length(C)
(A0R0)1/3

.
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Theorem 3.3 (Basic estimate for open curves). Let C be an immersed curve
and P1, P2, . . . , PN points on C listed in order along C. Assume there are
positive constants A0 and R0 such that

(a) For all j

A0

2
≤ Area(4PjPj+1Pj+2)

(b) For each j with 1 ≤ j ≤ N − 2 the points Pj, Pj+1, and Pj+2 are on
a circle of radius ≥ R0.

Then

N < 2 +
Length(C)
(A0R0)1/3

.

Proof of Theorem 3.2. Let Rj be the radius of the circle through Pj , Pj+1,
and Pj+2. To simplify notation, we set

aj := ‖Pj+1 − Pj‖.

Then by Proposition 3.1 and using Rj ≥ R0

Area(4PjPj+1Pj+2) <
(aj + aj+1)

3

16Rj

≤
(
aj + aj+1

)3
16R0

Combining this with assumption (a) gives

1 <
(aj + aj+1)

3

8A0R0
.

Take cube roots

1 <
aj + aj+1

2(A0R0)1/3

and sum on j

N <

N∑
j=1

aj + aj+1

2(A0R0)1/3
=

1

(A0R0)1/3

N∑
j=1

aj ,

where we have used
∑N

j=1 aj+1 =
∑N

j=1 aj . This sum is the length of a

polygon inscribed in C and thus
∑N

j=1 aj ≤ Length(C) which completes the
proof. �

Proof of Theorem 3.3. As in the proof of Theorem 3.2 we have

1 <
aj + aj+1

2(A0R0)1/3
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but this time only holding for 1 ≤ j ≤ N − 2. Sum on this to get

N − 2 <
N−2∑
j=1

aj + aj+1

2(A0R0)1/3
=

1

2(A0R0)1/3

N−2∑
j=1

aj +
N−2∑
j=1

aj+1


<

1

(A0R0)1/3

N−1∑
j=1

aj ≤
Length(C)
(A0R0)1/3

.

�

4. Some differential geometry.

Let C be a C2 plane curve and let γ : [a, b] → R2 be a unit speed, that
is ‖γ′(s)‖ = 1 for all s, parametrization of C. Let t(s) = γ′(s) be the unit
tangent and n(s) the unit normal where we choose n to be t rotated by π/2
in the positive direction. Then the curvature function along C is defined
by

dt

ds
= κ(s)n.

As remarked above, we orient all our curves so that the curvature is positive.
There is another way to define curvature which will be useful to us. As

t(s) is a unit vector, it can be written as

t = (cos(θ(s)), sin(θ(s)))

where θ is a C1 function and is the angle the tangent makes with the positive
x-axis. Then

dt

ds
=
dθ

ds
(− sin(θ(s)), cos(θ(s))) = κ(s)n(s).

Therefore, the curvature is the rate of change of the angle with respect to
arclength:

κ =
dθ

ds
.

The total curvature of C is the integral of curvature with respect to ar-
clength and is the total change in the angle of the tangent vector:

τττ(C) :=

∫
C
κ ds =

∫ b

a

dθ

ds
ds = θ(b)− θ(a).

This interpretation makes it easy to compare the total curvature of two
curves with the same endpoints.

Proposition 4.1. Let C1 and C2 be convex curves with the same endpoints
and with C1 inside C2 in the sense that C1 is inside the convex hull of C2 (see
Figure 1). Then the total curvature of C1 is less than or equal to the total
curvature of C2: ∫

C1
κC1 ds ≤

∫
C2
κC2 ds.
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C1
C2

Figure 1. The total curvature of C2 is greater than the total cur-
vature of C1.

Proof. This is obvious from Figure 1 and the interpolation of the total cur-
vature as the change in angle along the curve. The reader wanting a more
detailed (or more highbrow) proof can construct one from the Gauss-Bonnet
formula for surfaces with boundaries having canners. For this see Equa-
tion (4) in the excellent expository article [1] by S.-S. Chern. �

Various elementary inequalities between bounds on the length, total cur-
vature, and bounds on the radius will come up often enough that it is worth
recording them.

Proposition 4.2. If the radius of curvature of a curve satisfies R1 ≤ ρ ≤ R2

for some positive constants R1 and R2 and if L is the length of C then

R1 τττ(C) ≤ L ≤ R2 τττ(C)
and

L

R
1/3
1

≤
(
τττ(C)R2

R1

)1/3

L2/3 ≤ τττ(C)R2

R
1/3
1

.

Proof. The first of these follows from τττ(C) =
∫
C κ ds =

∫
C(1/ρ) ds and R1 ≤

ρ ≤ R2. The second follows from just using L ≤ τττ(C)R2

L

R
1/3
1

=

(
L

R1

)1/3

L2/3 ≤
(
τττ(C)R2

R1

)1/3

L2/3

≤
(
τττ(C)R2

R1

)1/3

(τττ(C)R2)
2/3 =

τττ(C)R2

R
1/3
1

�

Another basic tool we will use is an elementary maximum principle. This
is well-known, but we include a short proof for completeness.

Proposition 4.3 (Maximum Principle). Let C1 and C2 be convex curves with
C1 inside the convex hull of C2 and tangent to C2 at some point P (which
could be endpoints of C1 and C2). Then at P

κC1 ≥ κC2 .
An informal restatement is that if C1 is internally tangent to C2 at P , then

C1 is as least as curved as C2 at P .
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C1
C2

P

Figure 2. C1 is at least as curved as C2 at the point P .

Proof. In an appropriate coordinate system, and possibly working with
smaller pieces of the curves near P , we can write C1 and C2 as graphs
y = f1(x) and y = f2(x) respectively. Then the hypothesis of the proposition
is that the function f1− f2 has a local minimum at P . The first and second
derivative tests yield that if P = (x0, f(x0)), then f ′1(x0) − f ′2(x0) = 0 and
f ′′1 (x0) − f ′′2 (x0) ≥ 0. Using this equality and inequality and the standard
formula for the curvature of graphs we get

κC1(P ) =
f ′′1 (x0)

(1 + f ′1(x0)
2)3/2

≥ f ′′2 (x0)

(1 + f ′2(x0)
2)3/2

= κC2(P ).

�

Another well known fact is that two C2 curves with common endpoints,
tangent, and curvature can be joined together to form a C2 curve. Again,
we include a short proof.

Lemma 4.4 (Splicing Lemma). Let C1 and C2 be two curves of class C2

such that the terminal point of C1 is the initial point of C2, and that at this
common point the two curves have the same tangent and curvature as in
Figure 3. Then C1 ∪ C2 is a curve of class C2.

C1 C2P

Figure 3. The curves C1 and C2 have the same tangent and cur-
vature at P . This implies the union C = C1 ∪ C2 is also a C2

curve.

Proof. There are coordinates so that near P , C1 is the graph of a function
y = f1(x) for on the interval [a, 0] and C2 is the graph of y = f2(x) on [0, b]
for C2 functions f1 and f2. As the terminal point of C1 is the initial point
of C2 we have f1(0) = f2(0). That the curves have the same tangent at this
point implies f ′1(0) = f ′2(0). The equality of the curvatures at x = 0 gives

f ′′1 (0)/(1 + f ′1(0)2)3/2 = f ′′2 (0)/(1 + f ′2(0)2)3/2 which implies f ′′1 (0) = f ′′2 (0).
Therefore, the function given by f(x) = f1(x) on [a, 0] and f(x) = f2(x)
on [0, b] is continuous with continuous first and second derivatives. Whence
C = C1∪C2 is the graph of a C2 function near the common endpoint, showing
that C is C2. �
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Lemma 4.5. Let C1 and C2 be C2 convex curves with the same endpoints
and with C1 contained in the convex hull of C2. Assume the total curvature
of C2 satisfies ∫

C2
κ ds ≤ π.

Then C2 is at least as curved as C1 in the sense that

max
P∈C2

κC2(P ) ≥ min
Q∈C1

κC1(Q).

C1

C∗1
C2 P

`

Figure 4. C1 can be translated to a position C∗1 where it is exter-
nally tangent to C2 at the point P . At P the curve C2 is at least
as curved as C∗1 .

Proof. Let ` be the line through the common endpoints of the two curves
and consider the tangent lines to C2 at its endpoints as in Figure 4. Because
the total curvature of C2 is at most π these lines will either be be parallel
(when the total curvature is π) or will intersect on the same side of ` as C1
and C2. Translate C1 keeping one of its endpoints on one of the tangent lines
to a position C∗1 where it is tangent to C2 at a point P (this is the farthest
translated position where C2 and C∗1 still intersect). By the maximum prin-
ciple κC2(P ) ≥ κC∗1 (P ). As translation preserves curvature this completes
the proof. �

The hypothesis
∫
C2 κ ds ≤ π is necessary as can be seen in the example of

the two circular arcs in Figure 5.

C1

C2

Figure 5. The curvature of C2 is everywhere less than the curvature of C1.

Theorem 4.6. Let C1 and C2 be C2 closed convex curves that intersect in
three or more points. Then, they have comparable curvature in the sense
that there are points P on C1 and Q on C2 with κC1(P ) = κC2(Q).

Corollary 4.7. Let C be a closed convex C2 curve that intersects a circle of
radius R in three or more points. Then, there is a point on C with κ = 1/R.
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Proof of Theorem 4.6. If C1 and C2 intersect in infinitely many points, then
let P be an accumulation point of the set of intersection points. At P the
two curves will have contact of order at least 2 (and in fact, infinite order
if the curves are of class C∞) and therefore, have the same curvature at P .
Thus, we can assume the two curves only intersect in finitely many points.

Claim. There are points Pj on Cj for j = 1, 2 such that κC1(P1) ≤ κC2(P2).

Assuming the claim the theorem follows. For the claim implies the func-
tion κC2−κC1 is non-negative at some point on the Cartesian product C1×C2.
By symmetry this function is also non-positive at some point. As C1 ×C2 is
connected this implies κC2 − κC1 = 0 at some point, which is equivalent to
the conclusion of the theorem.

The proof of the claim splits into three cases.
Case 1: C1 is externally tangent to C2 at some point of intersection. Then

the claim follows directly from the maximum principle (Proposition 4.3).
Case 2: C1 is internally tangent to C2 at some point of intersection. Let

C1 be internally tangent to C2 at the point P . Let P− and P+ be the points
of intersection that are on either side of P (these exist as there are only
finitely many points of intersection). As the total curvature of C2 is 2π, at

least on of the two arcs C2
∣∣P
P−

or C2
∣∣P+

P
will have total curvature ≤ π. Then

Lemma 4.5 implies the conclusion of the claim holds.
Case 3: At every point of intersection C1 crosses C2. Between each two

consecutive points of intersection the arc of C2 between these points is either
inside of C1, call such arcs positive, or outside of C1, call such arcs negative. In
the current case each point of intersection is between a positive and negative
arc of C2. Therefore, the total number of points of intersection is even and
the number of positive arcs of C2 is half of this number. The number of
points of intersection is at least 3 and therefore the C2 has at least two
positive arcs. And again, as the total curvature of C2 is 2π at least one of
these arcs has total curvature ≤ π, and again we can use Lemma 4.5 to see
the claim holds. �

Theorem 4.8. Let C be a C2 convex curve with total curvature satisfying∫
C κ ds ≤ π that intersects a circle of radius R in three or more points. Then,

there is a point on C with curvature κ = 1/R.

Proof. We first consider the case when
∫
C κ ds < π. Let P0 be the initial

point of C and P1 the terminal point.
Let κ0 be the curvature of C at P0 and κ1 its curvature at P1. Let

α = π −
∫
C κ ds. Construct a curve C1 with total curvature α and with

curvature κ1 at its initial point and κ0 at its terminal point and with its
curvature everywhere between κ0 and κ1. As explicit example of such a curve
can be constructed by letting θ : [0, α]→ R be a function with derivative

θ′(t) =
α− t
α

κ1 +
t

α
κ0.
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and letting

γ(s) =

∫ s

0
(cos θ(t), sin θ(t)) dt.

Then γ is unit speed curve with curvature κ(s) = θ′(s). By rotating and
translating C1 we can move it until its initial point is P1 and C and C1 have
the same tangent vector at P1 as in Figure 6.

C

C∗

C∗1
C1

M

P0

P1

P2
P ∗1

Figure 6. Extend the curve C by the curve C1 so that that total
curvature of C ∪ C1 is π and is of class C2. Let P2 be the terminal
point of this union. Rotate these curves around the midpoint, M ,
of the segment between P0 and P2. The resulting closed curve will
be of class C2 as can be seen by four applications of The Splicing
Lemma 4.4.

Take the resulting curve C ∪ C1 and rotate it about the midpoint, M ,
of the segment between P0 and P1 and let C∗ and C∗1 . Then the union
B = C ∪ C1 ∪ C∗ ∪ C∗1 is a closed convex curve. As C and C1 are C2 the curve
B is C2 except possibly at the points P0, P1, P2, and P ∗1 . At P1 the curves
C and C1 have the same tangent vector and by construction they have the
same curvature at P1. Therefore B is C2 in a neighborhood of P1 by the
Spicing Lemma 4.4. A similar argument shows B is C2 near the remaining
points P0, P2, and P ∗1 .

As C intersects some circle of radius R in three or more points, the curve B
will also meet this circle in three or more points. By Corollary 4.7 the curve
B contains a point P where κ = 1/R. If P is on C we are done. It P is on
C∗, then, as C∗ is just a rotation of C, there is a point of C with κ = 1/R. If
P is on C1, then by the construction of C1 we have κC1(P ) = 1/R is between
κ0 and κ1 and by the intermediate value theorem there is a point of C with
curvature 1/R. A similar argument works in the case when P is on C∗1 . This
covers all the cases and completes the proof in the case the total curvature
of C is less than π.

If the total curvature of C is π and C intersects the circle of radius R in
four or more points, then it will have proper sub-arc that intersects the circle
in three or more points and such that this sub-arc will have total curvature
less than π and we are back in the case we have just covered. So, assume
C intersects the circle of radius R in exactly three points. If one of the
endpoints of C is not a point of intersection, then there is again a proper
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sub-arc of C that contains the three points of intersection with the circle and
this sub-arc will have total curvature less than π and we are done.

Therefore, we can assume that C intersects the circle of radius R in exactly
three points P0, P1, and P2 and that P0 and P2 are endpoints of C. As the
total curvature of C is π the tangent lines to C at P0 and P2 are parallel.
By a rotation we can assume these are vertical and that C is the graph of
a convex function. The proof now splits into cases. Let S be the circle of
radius R intersecting C in the points P0, P1, and P2.

Case 1: The points P0, P1, and P2 are all on the closed lower half of S.

S S S

(a) (b) (c)

P0 P0 P0

P1 P1 P1

P2 P2 P2

Figure 7. The three cases where the endpoints of C are on the
closed lower half of the circle S.

There are three sub-cases. First, C could be internally tangent to S at P1

as in Figure 7 (a). Then, by the Maximum Principle κC(P1) ≥ 1/R. The
total curvature of the lower half circle is π and thus by Lemma 4.5 there is
a point Q of C between P0 and P1 with κC(Q) ≤ 1/R. Thus, there is a point
on C with curvature 1/R.

Sub-case (b) is as in Figure 7 (b) where C is externally tangent to S at
P1. By the Maximum Principle κC(P1) ≤ 1/R, and as the total curvature of
C is π Lemma 4.5 gives a point between P0 and P1 where κC ≥ 1/R. Thus,
there is a point with κC = 1/R.

Sub-case (c) is as in Figure 7 (c) where C crosses S at P1. Then C and
the lower half of the circle have total curvature π and therefore Lemma 4.5
can be applied twice, once between P0 and P1 to find a point of C with
κC ≥ 1/R, and once between P1 and P2 to find a point on C with κC ≤ 1/R.
So again, there is a point with κC = 1/R.

Case 2: At least one of the endpoints of C is in the open upper half of the
circle S.

S S
S∗

(a) (b)

P0 P0

P1
P1

P2

P2

P ∗2

P ∗1P ∗0

Figure 8. The two cases where one endpoint of C is on the open
upper half of the circle S.
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Let P2 be an endpoint that is in the upper half of S. As the tangent to
C at P2 is vertical the curve C will contain points in the interior of S. Thus,
there are two sub-cases.

Sub-case (a) is when C is internally tangent to S at P1 as in Figure 8 (a).
By the maximum principle κC ≥ 1/R at P1. The total curvature of the circle

is 2π and therefore at least one of the arc S
∣∣P1

P0
or S

∣∣P2

P1
has total curvature

≤ π. Lemma 4.5 then gives a point of C with κC ≤ 1/R and there is a point
with κC = 1/R.

Sub-case (b) is when C crosses S at P1. As the tangent to C at P2 is
vertical the part of C near P2 is interior to S. Translate S downward to
a position S∗ so that it contains points in the region bounded by the two

curves S
∣∣P1

P0
and C

∣∣P1

P0
. As the lower half of S∗ contains both points inside

and outside this region and it does not intersect S, we see the lower half of

S∗ intersects C
∣∣P1

P0
in at least two points P ∗0 and P ∗1 . As P1 is inside of S∗ and

P2 is outside of S the circle S∗ will intersect S∗ at some point P ∗2 on C
∣∣P2

P1
.

Therefore C
∣∣P ∗2
P ∗0

intersects the circle S∗ of radius R in at least three points

and as it is a proper sub-arc of C it has total curvature < π. Therefore C
∣∣P ∗2
P ∗0

,

and thus also C, has a point with curvature = 1/R. �

The curves in Figure 9 show the hypothesis
∫
C κ ds ≤ π in Theorem 4.8

is best possible.

C1

C2

S S

Figure 9. The circle S has radius R. In the figure on the left, C1
meets S in three points and has curvature < 1/R at all points.
In the figure on the right, C2 meets S in three points and has
curvature > 1/R at all points. The total curvatures of C1 and C2
can be made arbitrarily close to π.



BOUNDING THE NUMBER OF INTEGER POINTS NEAR A CONVEX CURVE 15

5. Affine arclength and bounding the number of lattice points
on circles and ellipses.

Theorem 5.1. Let C be an arc of length L of a circle with radius R and let
L be a lattice. If

L

R1/3
≤ 2(AL)1/3

then C contains at most 2 points of the lattice L.

Theorem 5.2. Let C be an arc of length L of a circle with radius R and let
L be a lattice. Then

#(C ∩ L) < 2 +
L

(ALR)1/3
.

Theorem 5.3. Let S be a circle of radius R and L a lattice. Then

#(S ∩ L) <
Length(S)

(ALR)1/3
=

2πR2/3

A
1/3
L

.

Proof of Theorem 5.1. If C ∩L has three or more points then let P0, P1, and
P2 be distinct points in C ∩ L. Then the triangle 4P0P1P2 has area ≥ 1

2AL
by Proposition 2.3 and Proposition 3.1 implies

AL
2
<

(‖P1 − P0‖+ ‖P2 − P1‖)3
16R

<
L3

16R

which simplifies to L > 2(ALR)1/3. This proves the contrapositive of the
theorem. �

Proof of Theorem 5.2. Let P1, P1, . . . , PN be the points of C ∩ L. Then
Proposition 2.3 implies the hypothesis of Theorem 3.3 holds with A0 = AL
and R0 = R. �

Proof of Theorem 5.3. This proof is identical to the previous proof except
that this time Theorem 3.2 rather than Theorem 3.3 is used. �

Remark 5.4. The constant 2 in Theorem 5.1 is sharp. Let S be a circle
of radius R and let P0, P1, and P2 be three points on S with the arclength
from P0 to P1 and the arclength from P1 to P2 being L/2 as in Figure 10.

P0

P2

P1

R

c
a

b

Figure 10. The points P0, P1, and P2 are on a circle of radius R,
the arclength between P0 and P2 is L and P1 is the midpoint of
the arc between P0 and P1. The lengths, a, b, and c of the sides of
4P0P1P2 are as shown.
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Recalling if two points P and Q on a circle of radius R are the endpoints
of an arc of length λ on the circle, then ‖P −Q‖ = 2R sin(λ/(2R)) we find
that the side lengths of 4P0P1P2 are given by

a(R) = b(R) = 2R sin

(
L

4R

)
, c(R) = 2R sin

(
L

2R

)
Let LR = L(P0, v1, v2) where vj = Pj − P0 for j = 1, 2. For this lattice

ALR = 2 Area(4P0P1P2) =
a(R)b(R)c(R)

2R

where the second equality follows from Proposition 3.1. Using these in the
inequality in Theorem 5.1 and doing a bit of algebra gives

L ≤ 2(ALR)1/3 = 2

(
a(R)b(R)c(R)

2

)1/3

.

However,

lim
R→∞

a(R) = lim
R→∞

b(R) =
L

2
, lim

R→∞
c(R) = L.

Therefore

L ≤ lim
R→∞

2

(
a(R)b(R)c(R)

2

)1/3

= 2

(
L3

8

)1/3

= L,

showing the inequality is sharp.
This example is a bit unsatisfying as we are choosing the lattice to depend

on both R and L. A natural question is given a lattice L what is the best
constant CL such that for any arc of length L on a circle of radius R with

L < CL(ALR)1/3

contains at most 2 points of L. Theorem 5.1 together with these examples
shows

inf
L
CL = 2.

For the lattice L = Z2 and restricting to circles centered at the origin Cilleru-
elo [2] and Cilleruelo and Granville [3] have shown CZ2 = 2(21/3). To the
best of our knowledge CL is not known for any other lattice.

We recall the definition of affine arclength. Let C be a curve with positive
curvature and let γ : [a, b]→ C be a parametrization of C. Then, the affine
arclength of C is given by

Aff(C) =

∫ b

a
(γ′(t) ∧ γ′′(t))1/3 dt.

If φ(v) = Mv+b is an affine map with det(M) > 0, then it is straightforward
to check that if c(t) = φ(γ(t)) then

c′(t) ∧ c′′(t) = (Mγ′(t)) ∧ (Mγ′′(t)) = det(M)γ′(t) ∧ γ′′(t)
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and therefore, the affine arclength transforms under affine maps with positive
determent by the rule

(5.1) Aff(φ[C]) = det(M)1/3 Aff(C).
It γ : [a, b] → R2 is unit speed in the Euclidean sense and has positive

curvature then γ′(s) = t(s), and γ′′(s) = κ(s)n(s). Thus, γ′(s) ∧ γ′′(s) =
κ(s). This implies:

Lemma 5.5. Let C be a C2 curve with positive curvature κ. Then, the
affine arclength of C is

(5.2) Aff(C) =

∫ b

a
κ1/3 ds.

In particular, if C is an arc on a circle of radius R, then

Aff(C) =
Length(C)
R1/3

.

By an ellipse we mean a curve E with an equation of the form

A(x− x0)2 + 2B(x− x0)(y − y0) + C(y − y0)2 = 1

where the matrix

[
A B
B C

]
is positive definite. A fact we will use is that if E

is an ellipse, then there is affine map φ such that det(φ) = 1 and the image
φ
[
E
]

is a circle.

Theorem 5.6. Let C be an arc on an ellipse E and let L be a lattice such
that

Aff(C) ≤ 2(AL)1/3.

Then, C contains at most 2 points of the lattice L.

Theorem 5.7. If C is an arc on an ellipse and L is a lattice, then

#(C ∩ L) < 2 +
Aff(C)
A

1/3
L

.

Theorem 5.8. Let E be an ellipse and L a lattice. Then

#(E ∩ L) <
Aff(E)

A
1/3
L

.

Proof of Theorem 5.6. Choose an affine map φ with det(φ) = 1 and such
that the image S := φ

[
E
]

is a circle and let R be the radius of this circle.

Let C∗ = φ
[
C
]

and L∗ = φ
[
L
]
. Then by the invariance property of affine

arclength under affine maps, Lemma 5.5, and AL∗ = det(M)AL = AL

Length(C∗)
R1/3

= Aff(C∗) = det(M)1/3 Aff(C) = Aff(C) ≤ (AL)1/3 = (AL∗)
1/3.

Thus by Theorem 5.1 #(C∗ ∩ L∗) ≤ 2. But φ is a bijection so this implies
#(C ∩ L) ≤ 2. �
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Proofs of Theorems 5.7 and 5.8. Using the notation of the proof of Theo-
rem 5.6, the invariance properties of affine arclength, and the equalities
Aff(C) = Aff(C∗) = Length(C∗)/R1/3, Aff(E) = 2πR2/3, AL = AL∗ , #(C ∩
L) = #(C∗ ∩ L∗), and #(E ∩ L) = #(S ∩ L∗) hold. Thus Theorems 5.7 and
5.8 follow directly from Theorems 5.2 and 5.3. �

6. Bounding the number of lattice points on a curve by
curvature and arclength.

Theorem 6.1. Let C be a convex curve whose radius of curvature satis-
fies ρ ≥ R1 for some constant R1 > 0 and whose total curvature satisfies∫
C κ ds ≤ π. Let L be a lattice. If

Length(C)
(ALR1)1/3

≤ 2

then C contains at most two points of L.

Proof. Towards a contradiction assume C contains three points P0, P1, and
P2 of L and that P1 is between P0 and P2 on C. Let R be the radius of the
circle through these points. Because the total curvature of C is at most π
Theorem 4.8 yields a point is a point of C with radius of curvature R which
implies R ≥ R1. As the points P0, P1, and P2 are in L the lower bound
Area(4P0P1P2) ≥ AL/2 holds by Proposition 3.1 and

AL
2
≤ Area(4P0P1P2) <

(‖P1 − P0‖+ ‖P2 − P1‖)3
16R1

≤ Length(C)3
16R1

which contradicts Length(C)/(ALR1)
1/3 ≤ 2. �

Theorem 6.2. Let C be an open convex curve such that the radius of con-
vergence of C satisfies the inequality ρ ≥ R1 and let L be a lattice. Then

(6.1) #(C ∩ L) < 4 +
Length(C)
(ALR1)1/3

.

If the total curvature of C satisfies τττ(C) ≤ π this can be improved to

(6.2) #(C ∩ L) < 2 +
Length(C)
(ALR1)1/3

.

Proof. Let N = #(C ∩ L) and let P1, P2, . . . , PN be the points of C ∩ L
listed in order along C. Let rj be the radius of the circle through Pj , Pj+1,

and Pj+2. If the total curvature of C
∣∣Pj+2

Pj
is ≤ π then Theorem 4.8 gives

a point Qj on this curve with rj = ρ(Qj) ≥ R1. Also, by Proposition 2.3

Area(4PjPj+1Pj+2) ≥ AL/2. Therefore, if the total curvature of C
∣∣Pj+2

Pj
is

≤ π for j ∈ {1, 2, . . . , N − 2} Theorem 3.3 applies and the inequality (6.2)
holds. Thus will be the case if τττ(C) ≤ π.

This leaves the case where for some k ∈ {1, 2, . . . , N − 2} the total cur-

vature of C
∣∣Pk+2

Pk
is greater than π. As the total curvature of C satisfies
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τττ(C) < 2π at least one of the arcs C
∣∣Pk+1

P1
or C

∣∣PN

Pk+1
will have total curvature

< π. We prove the case where C
∣∣Pk+1

P1
has total curvature < π, the other

case being similar. Then both C
∣∣Pk+1

P1
and C

∣∣PN

Pk+2
will have total curvature

< π and by what we have just done

#(C
∣∣Pk+1

P1
) < 2 +

Length(C
∣∣Pk+1

P1
)

(ALR1)1/3

#(C
∣∣PN

Pk+2
) < 2 +

Length(C
∣∣PN

Pk+2
)

(ALR1)1/3
.

Adding these and using Length(C
∣∣Pk+1

P1
)+Length(C

∣∣PN

Pk+2
) < Length(C) shows

the bound (6.1) holds. �

Theorem 6.3. Let C be a closed convex curve whose radius of curvature
satisfies ρ ≥ R1 for some positive constant R1 and let L be a lattice. Then

(6.3) #(C ∩ L) <
Length(C)
(ALR1)1/3

.

Proof. Let P1, P2, . . . , PN be the points of C ∩L listed in cyclic order around
C. By Corollary 4.7 the circle through Pj , Pj+1, and Pj+2 has radius ρC(Q)
for some point Q on C and therefore this radius is at least R1. By Proposition
2.3 the area of4PjPj+1Pj+2 is at least AL/2. Therefore Theorem 3.2 implies
(6.3). �

Corollary 6.4. In Theorems 6.1, 6.2, and 6.3 if there is also an upper
bound ρ ≤ R2 on the radius of curvature, then the theorems still hold if the
expression

L

(ALR)1/3

is replaced by either of the expressions(
τττ(C)R2

R1

)1/3

L2/3,
τττ(C)R2

(ALR1)1/3
.

Proof. This follows from the inequalities of Proposition 4.2. �

Remark 6.5. The expression
(
τττ(C)R2

R1

)1/3
L2/3 is of interest as the coeffi-

cient
(
τττ(C)R2

R1

)1/3
is invariant under dilations of the curve. The expression

τττ(C)R2

(ALR1)1/3
is interesting as it only depends on the integral of curvature

∫
C κ ds

and the curvature bounds 1/R2 ≤ κ ≤ 1/R1.
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7. Bounding the number of lattice points near a curve.

Lemma 7.1. Let P1, P1, P3, P
′
3 be points in R2. Let δ ≥ 0 and ‖P3−P ′3‖ ≤ δ.

Denote by A the area of 4P1P2P3, and by A1 the area of 4P1P2P
′
3. Then,

|A−A1| ≤
‖P1 − P2‖δ

2
.

Proof. Let
←−→
P1P2 be the line through P1 and P2 and let h be the distance of

P3 and h′ the distance of P ′3 from this line. Then

A =
‖P1 − P2‖h

2
and A1 =

‖P1 − P2‖h′
2

.

The distance between P3 and P ′3 is at most δ and therefore |h − h′| ≤ δ.
From this it follows

|A−A1| =
‖P1 − P2‖|h− h′|

2
≤ ‖P1 − P2‖δ

2
.

�

Lemma 7.2. Let 4P1P2P3 and 4P ′1P ′2P ′3 be triangles in the plane with
areas A and A′ respectively. Let δ ≥ 0 and assume

‖Pj − P ′j‖ ≤ δ for j = 0, 1, 2.

Then

|A−A′| ≤ (‖P1 − P2‖+ ‖P3 − P2‖+ ‖P3 − P1‖)δ
2

+
3δ2

2
(7.1)

≤ (‖P2 − P1‖+ ‖P3 − P2‖)δ +
3δ2

2
(7.2)

Proof. Let A = A0 be the area of 4P1P2P3, A1 the area of 4P1P2P
′
3, A2

the area of 4P1P
′
2P
′
3, and A3 = A′ the area of 4P ′1P ′2P ′3. By Lemma 7.1

and the triangle inequality

|A0 −A1| ≤
‖P1 − P2‖δ

2

|A1 −A2| ≤
‖P1 − P ′3‖δ

2
≤ (‖P1 − P3‖+ δ)δ

2

|A2 −A3| ≤
‖P ′2 − P ′3‖δ

2
≤ (‖P2 − P3‖+ 2δ)δ

2

Therefore

|A−A′| = |A0 −A3|
≤ |A0 −A1|+ |A1 −A2|+ |A2 −A3|

≤ (‖P1 − P2‖+ ‖P3 − P2‖+ ‖P3 − P1‖)δ
2

+
3δ2

2

which proves the inequality (7.1). By the triangle inequality ‖P3 − P1‖ ≤
‖P2−P1‖+‖P3−P2‖ and therefore the inequality (7.2) follows from (7.1). �
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Lemma 7.3. In the triangle 4P1P2P2 as in Figure 11 using the side P1P3

as a base, the height is

h =
a2

2R
.

P1

P3

P2

R

R

R− h h

b

b

a

a

C

Figure 11. The points P1, P2, and P3 are on the circle of radius R
centered at C and ‖P2 − P1‖ = ‖P3 − P2‖ = a, ‖P1 − P3‖ = 2b,
and h is as shown. Then h = a2/(2R).

Proof. Two applications of the Pythagorean Theorem give

b2 + (R− h)2 = R2, b2 + h2 = a2

Solving these for b2 and setting the results equal gives

R2 − (R− h)2 = a2 − h2

and solving this for h gives the desired formula. �

Lemma 7.4. Let P1, P2, P3 be points on a circle of radius R and let P ′1, P
′
2, P

′
3

be points with ‖P ′j − P ′k‖ ≥ d when j 6= k for some d > 0 and ‖Pj − P ′j‖ ≤ δ
for j = 1, 2, 3. Then

(7.3) δ <
d2

2
(
R+ d+

√
(R+ d)2 − d2

)
implies the points P ′1, P ′2, and P ′3 are not collinear.

Proof. First note

d2

2
(
R+ d+

√
(R+ d)2 − d2

) < d2

2d
=
d

2

and thus the inequality (7.3) implies δ < d/2. Whence

‖Pj − Pk‖ ≥ ‖P ′j − P ′k‖ − ‖Pj − P ′j‖ − ‖Pk − P ′k‖ > d− 2δ > 0.

Therefore, the point P1, P2, and P3 are distinct.
Given three points on a circle, then at least one of the points, P , is such

that the other two are on opposite sides of the diameter through P . For if
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for one of the points, call it Q the other two are both on the same side of
the diameter through Q, or one of them is the other end of the diameter
through Q, then all three are on a closed half circle. Then let P be the one
of the points on this half circle which is between the other two.

Therefore, we can label the points P1, P2 and P3 so that P1 and P3 are
on opposite sides of the diameter through P2. Farther, we can assume the
circle containing P1, P2, and P3 goes through the origin, that P2 is at the
origin, the circle is above the x-axis and is tangent to the x-axis at P2, P1

is on the open half plane defined by x < 0, and P3 is on the open half plane
defined by x > 0. Let a = d − 2δ and let Q1 and Q3 be the points on the
circle with ‖P2−Q1‖ = ‖P2−Q3‖ = a as in Figure 12. Let h be the distance
between P2 and the line through Q1 and Q3.

P2

P1

P3

Q1 Q3

h aa

{(x, y) : y = h}

Figure 12. The points Q1 and Q3 are the points on the circle such
that ‖Qj − P2‖ = d − 2δ =: a. The circles around the points Pj

and Qj have radius δ and therefore contain the points P ′1, P ′2, and
P ′3.

By Lemma 7.3

h =
a2

2R
=

(d− 2δ)2

2R
.

As long at h > 2δ the line with equation y = h/2 separates the open disks
of radius δ about P1 and P3 from the open disk of radius δ about P2 and
therefore the points P ′1 and P ′3 are above the line {y = h/2} and P ′2 is below
this line and thus these three points are not collinear.

The inequality h > 2δ is

(7.4) 2δ <
(d− 2δ)2

2R

which is equivalent to

0 < 4δ2 − 4(R+ d)δ + d2.
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Viewing the right-hand side of this as a quadratic polynomial in δ with roots
r1 < r2, then

r1, r2 =
R+ d±

√
(R+ d)2 − d2
2

.

Thus, the inequality (7.4) has as solution set the union (−∞, r1) ∪ (r2,∞).
But r2 > d/2 so (r2,∞) can be ignored. Therefore

δ < r1 =
R+ d−

√
(R+ d)2 − d2
2

=
d2

2
(
R+ d+

√
(R+ d)2 − d2

)
implies the points P ′1, P

′
2, and P ′3 are not collinear. �

Lemma 7.5. Let C be either a closed convex curve, or a convex arc with
total curvature ≤ π and assume the radius of curvature of C satisfies

R1 ≤ ρ ≤ R2.

Let L be a lattice and let P ′1, P ′2, and P ′3 be distinct points in L with

dist(P ′j , C) < δ

where

δ <
d2L

2
(
R2 + dL +

√
(R2 + dL)2 − d2L

)
and let Pj be a point of C with ‖Pj − P ′j‖ < δ for j = 1, 2, 3. Then,

Area(4P1P2P3) ≥
AL
2
− (‖P2 − P1‖+ ‖P3 − P2‖)δ −

3

2
δ2.

Proof. Let R be the radius of the circle through P1, P2, and P3. Then by
Corollary 4.7 or Theorem 4.8 there is a point on C where ρ = R and thus
R1 ≤ R ≤ R2. Then by Lemma 7.4 the points P ′1, P

′
2, and P ′3 are not

collinear and therefore by Proposition 2.3 Area(4P ′1P ′2P ′3) ≥ AL/2. The
lower bound on the Area(4P1P2P3) follows from Proposition 7.1. �

Theorem 7.6. Let C be a convex arc with total curvature ≤ π and whose
radius of curvature satisfies R1 ≤ ρ ≤ R2. Let L be a lattice and let δ > 0
satisfy

δ <
d2L

2
(
R2 + dL +

√
(R2 + dL)2 − d2L

) .
Let L = Length(C). Then

(7.5)
L3

8R1
+ 2Lδ + 3δ2 ≤ AL

implies

(7.6) #{Q ∈ L : dist(Q, C) < δ} ≤ 2.
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Proof. We prove the contrapositive: If #{Q ∈ L : dist(Q, C) < δ} ≥ 3, then
the inequality (7.5) is violated. Assume three are three or more points of L
at a distance less than δ form C. Then there are P1, P2, P3, P

′
1, P

′
2, and P ′3

that satisfy the hypothesis of Lemma 7.5. Let R be the radius of the circle
through P1, P2, and P3. By Theorem 4.8 and the given bounds on ρ we
have R1 ≤ R ≤ R2. By Lemma 7.5 and Proposition 3.1

AL
2
− Lδ − 3

2
δ2 ≤ AL

2
− (‖P2 − P1‖+ ‖P3 − P2‖)δ −

3

2
δ2

≤ Area(4P1P2P3)

<
(‖P2 − P1‖+ ‖P3 − P2‖)3

16R

≤ L3

16R1

which contradicts (7.5). �

Theorem 7.7. Let C be a convex arc with total curvature at most π with
radius of curvature bounded by R1 ≤ ρ ≤ R2. Let L be a lattice and δ > 0
with

δ <
d2L

2(R2 + dL +
√

(R2 + dL)2 − d2L)

and

(7.7)
AL
2
− Lδ − 3

2
δ2 > 0.

Then,

#{Q ∈ L : dist(C, Q) < δ} < 2 +
L(

R1(AL − 2Lδ − 3δ2)
)1/3

where L = Length(C).
Proof. Let N = #{Q ∈ L : dist(C, Q) < δ} and

{Q ∈ L : dist(C, Q) < δ} = {P ′1, P ′2, . . . , P ′N}
and let Pj be a point of C with dist(P ′j , C) = ‖Pj − P ′j‖. By Lemma 7.5

Area(4PjPj+1Pj+2) ≥
AL
2
− (‖Pj+1 − Pj‖+ ‖Pj+2 − Pj+1‖)δ −

3

2
δ2.

and by Theorem 4.8 the circle through Pj , Pj+1 and Pj+2 has radius of
curvature ρ(P ) for some point on C and therefore its radius is ≥ R1. Thus,
the result follows from Theorem 3.3. �

Theorem 7.8. Let C be a closed convex curve with radius of curvature
bounded by R1 ≤ ρ ≤ R2. Let L be a lattice and δ > 0 with

δ <
d2L

2(R2 + dL +
√

(R2 + dL)2 − d2L)
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and

(7.8)
AL
2
− Lδ − 3

2
δ2 > 0.

Then,

#{Q ∈ L : dist(C, Q) < δ} < L(
R1(AL − 2Lδ − 3δ2)

)1/3
where L = Length(C).
Proof. Other than using Theorem 3.2 rather than Theorem 3.3 this is exactly
the same as Theorem 7.7. �

Using the inequalities of Proposition 4.2, in particular L ≤ τττ(C)R2, we
obtain corollaries to the previous three theorems that only involve the total
curvature, τττ(C), the curvature bounds R1 and R2 and the invariants AL and
dL of the lattice.

Corollary 7.9. In Theorem 7.6 if the inequality (7.5) is replaced by

(τττ(C)R2)
3

8R1
+ 2τττ(C)R2δ + 3δ2 ≤ AL

the conclusion #{Q ∈ L : dist(Q, C) < δ} ≤ 2 still holds. �

Corollary 7.10. In Theorem 7.7 if the hypothesis 7.7 is replaced by

AL
2
− 2τττ(C)R2δ −

3

2
δ2 > 0

then

#{Q ∈ L : dist(C, Q) < δ} < 2 +
R2 τττ(C)

(R1(AL − 2τττ(C)R2δ − 3δ2))1/3
.

�

Corollary 7.11. In Theorem 7.8 if the hypothesis 7.8 is replaced by

AL
2
− 2τττ(C)R2δ − δ2 > 0

then

#{q ∈ L : dist(C, Q) < δ} < R2 τττ(C)
(R1(AL − 2τττ(C)R2δ − 3δ2))1/3

.

�

We record what is the specialization of these results to circles.

Corollary 7.12. Assume C is an arc of a circle of radius R, L is a lattice,
and δ > 0 satisfies

δ <
d2L

2(R+ dL +
√

(R+ dL)2 − d2L)
.

Let L = Length(C). Then,
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(a) If L ≤ πR (which is equivalent to having total curvature ≤ π) and

L3

8R
+ 2Lδ + 3δ2 ≤ AL

then

#{Q ∈ L : dist(Q, C) < δ} ≤ 2.

(b) If L ≤ πR and
AL
2
− 2Lδ − 3δ2 > 0,

then

#{Q ∈ L : dist(C, Q) < δ} < 2 +
L

(R(AL − 2Lδ − 3δ2))
1
3

.

(c) If C is the entire circle (i.e. L = 2πR) and

AL
2
− 4πRδ − 3δ2 > 0,

then

#{Q ∈ L : dist(C, Q) < δ} < 2πR
2
3

(AL − 4πR− 3δ2)
1
3

.

8. Examples

The following shows that Theorem 6.2 and Corollary 6.4 are close to being
sharp.

Theorem 8.1. Let L be a lattice and n ≥ 2 an integer. Then there is a
convex curve C of length L that contains exactly n points of L, and has lower
and upper bounds

R1 = min
P∈C

ρ(P ), R2 = max
P∈C

ρ(P )

for the radius of curvature of C, so that the inequalities

L

(ALR1)1/2
≤
(
τττ(C)R2

(ALR1)

)1/3

L2/3 ≤ τττ(C)R2

(ALR1)1/3
< n+ 2.

hold.

Proof. In light of Proposition 4.2 we only need to find an example with

(8.1)
τττ(C)R2

(ALR1)1/3
< n+ 2

Let L = L(v0, v1, v2) where we can assume v1 ∧ v2 > 0, by possibly
replacing v2 by −v2. Then v1 ∧ v2 = AL. Let a > 0 and b = a + (n − 1).
Define a curve Ca parametrically c : [a, b]→ R2 by

ca(t) = v0 + tv1 +
t(t+ 1)

2
v2.
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Each of the points ca(k) with k = a, a+1, . . . , a+(n−1) is a point of L and
if ca(t) = v0 + tv1 + (t(t+ 1)/2)v2v0 = v0 + kv1 +mv2 is a point of L on Ca,
then the linear independence of v1 and v2 implies k = t and m = t(t+ 1)/2,
so that ca(t) = ca(k). Thus, there are exactly n points of L on Ca. We
will show if a is sufficiently large this curve has the desired properties. The
derivatives of ca are

c′a(t) = v1 + (t+ 1/2)v2, c′′a(t) = v2

Then

lim
a→∞

‖c′a(t)‖
a

= lim
a→∞

∥∥∥∥1

a
v1 +

t+ 1/2

a
v2

∥∥∥∥ = ‖v2‖

and this limit holds uniformly in t ∈ [a, b]. This gives the asymptotic formula

‖c′a(t)‖ ∼ a‖v2‖
and this holds uniformly for t ∈ [a, b]. Using a standard formula for curva-
ture

ρ =
1

κ
=

‖c′a(t)‖3
c′a(t) ∧ c′′a(t)

∼ a3‖v2‖3
AL

and this holds uniformly in t ∈ [a, b]. As this formula is independent of t
we see that if R1(a) and R2(a) are the minimum and maximum radius of
curvature on Ca then

R1(a) ∼ R2(a) ∼ a3‖v2‖3
AL

.

Asymptotically the total curvature of Ca is

τ(a) =

∫
Ca

ds

ρ
=

∫ b

a

‖c′a(t)‖ dt(‖c′a(t)‖3
AL

) = AL

∫ b

a

dt

‖c′a(t)‖2

∼ AL
∫ b

a

dt

a2‖v2‖2
=

(n+ 1)AL
a2‖v2‖2

where we have used b− a = n+ 1. Putting these formulas together gives

τ(a)R2(a)

(ALR1(a))1/3
∼

(
(n+ 1)AL
a2‖v2‖2

)(
a3‖v2‖3
AL

)
(
AL

a3‖v2‖3
AL

)1/3
= n+ 1.

Thus for sufficiently large a the inequality (8.1) holds. �
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