APPLICATIONS OF TYCHONOFF'S THEOREM.

This set of notes and problems is to show some applications of the Tychonoff product theorem. In the cases here we will have a set A be looking at $[a,b]^A$, that is the set of all functions form A to the interval [a,b]. This is the same as the product $\prod_{\alpha \in A} X_{\alpha}$ where $X_{\alpha} = [a,b]$ for all α . The product topology on $[a,b]^A$ has a base the sets of the form

$$U(a_1, t_1, \dots, a_n, t_n; \varepsilon) := \{ f \in [a, b]^A : |f(a_i) - t_1| < \varepsilon \text{ for } i = 1, \dots, n \}$$

where $\{a_1, \ldots, a_n\}$ is a finite subset of $A, t_1, \ldots, t_n \in [a, b]$ and $\varepsilon > 0$. Tychonoff's theorem tells use that this topology on $[a, b]^A$ is compact and therefore if \mathcal{F} is a closed subset of $[a, b]^A$ is a closed subset of $[a, b]^A$, then \mathcal{F} is also compact. Here are couple of examples of this type.

Definition 1. A *normed vector space* is a vector space X over the field of real numbers \mathbf{R} and along with a norm, which is a function $\|\cdot\|: X \to \mathbf{R}$ such that

- (1) $||x|| \ge 0$ with ||x|| = 0 if and only if x = 0,
- (2) $||x+y|| \le ||x|| + ||y||$ (i.e. the triangle inequality holds), and
- (3) for all $c \in \mathbf{R}$ and $x \in X$ we have ||cx|| = |c|||x||.

Definition 2. A bounded linear functional on the normed linear space X is a linear function $f: X \to \mathbf{R}$ such that for some C > 0

$$|f(x)| \le C||x||$$

holds for all $x \in X$. Let X^* be the set of all bounded linear functionals $f: X \to \mathbf{R}$.

We now let

$$B := \{x \in X : ||x|| \le 1\}.$$

Let

$$B^* := \{f\big|_B : f \in X^*, \text{ and for all } x \in X \ |f(x)| \le \|x\|\}.$$

The inequality $|f(x)| \le ||x||$ implies that if $x \in B$, then $|f(x)| \le ||x|| \le 1$. Therefore B^* is a set of functions that map B into [-1,1]. That is B^* is a subset of $[-1,1]^B$.

Theorem 3. For any normed linear space X, the set B^* is a closed subset of $[-1,1]^B$ and therefore B^* is compact with the topology it gets as a subspace of $[-1,1]^B$. (In functional analysis this topology is called the **weak* topology**.)

Problem 1. Prove this.

Definition 4. A *normed algebra* is a normed linear space A with norm $\|\cdot\|$ such that A is has a product $(x,y) \mapsto xy$ that makes A into a associative algebra and such that $\|xy\| \leq \|x\| \|y\|$. A *multiplicative linear functional* on A is a linear function $f: A \to \mathbf{R}$ such that f(xy) = f(x)f(y) and $|f(x)| \leq \|x\|$.

Let $B:=\{x\in A:\|x\|\leq 1\}$ be the unit ball of A and let Δ be the set of the restrictions of multiplicative linear functionals to B. That is

$$\Delta := \{f\big|_B : f \text{ is a mulitiplictive linear functional}\}.$$

This is a subset of $[-1,1]^B$.

Theorem 5. For any normed algebra the set Δ is a closed subset of $[-1,1]^B$ and therefore compact.

Problem 2. Prove this.