Math 554

Homework

Read Section 2.1 of the text. Be sure you know the following definition

Definition 1. We say that f(x) approaches the limit L as x approaches x_0 , and write

$$\lim_{x \to x_0} f(x) = L$$

if f is defined on some deleted neighborhood of x_0 and, for every $\varepsilon > 0$, there is a $\delta > 0$ such that

$$0 < |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Here is an example if $f(x) = x^2 + x$ then

$$\lim_{x \to 3} x^2 + x = 12.$$

Scratch work:

$$|f(x) - 12| = |x^2 + x - 12| = |x - 3||x + 4|.$$

We would like this to be less than ε by making $|x-3| < \delta$. The factor of |x-3| is good. To deal with the |x+4| factor, we assume that $\delta \le 1$. Then $|x-3| \le \delta \le 1$ implies $2 \le x \le 4$ and so $|x+4| \le 8$. Thus if we let $\delta = \min\{1, \varepsilon/8\}$ then things should work.

We now put aside our scratch work and become formal

Proposition 2. If $f(x) = x^2 + x$ then

$$\lim_{x \to 3} x^2 + x = 12.$$

Proof. Let

$$\delta = \min\left\{1, \frac{\varepsilon}{8}\right\}.$$

Then $|x-3| < \delta$ implies.

$$|x+4| = |(x-3)+7| \le |x-3|+7 < \delta+7 \le 1+7 = 8.$$

Thus $0 < |x - 3| < \delta$ implies

$$|f(x) - 12| = |x^2 + x - 12|$$

$$= |x - 3||x + 4|$$

$$\leq 8|x - 3| \qquad (as |x + 4| < 8)$$

$$< 8\left(\frac{\varepsilon}{8}\right) \qquad (as |x - 3| < \delta \le \varepsilon/8)$$

$$= \varepsilon.$$

Here are some for you to do. I am not so interested in seeing the scratch work, but I do want all the details of the proof put in. I am going to be very strict in grading these.

Problem 1. Show $\lim_{x\to -1} 3x^2 = 3$.

Here is an easier one

Problem 2. Let $a \neq 0$ and let f(x) = ax + b. Show $\lim_{x \to x_0} f(x) = ax_0 + b$. Hint: Let $\delta = \varepsilon/a$.

Here is another example. $\lim_{x\to 1} x^3 = 1$.

Scratch work: For $f(x) = x^3$ we have

$$|f(x) - 1| = |x^3 - 1| = |x^2 + x + 1||x - 1|.$$

We would like this to be less than ε by making $|x-1| < \delta$. To deal with the |x+4| factor, we assume that $\delta \le 1$. Then $|x-1| \le \delta \le 1$ impies 0 < x < 2 and so $|x^2 + x + 1| \le 9$. So $\delta = \min\{1, \varepsilon/9\}$ should work.

Proposition 3. If $f(x) = x^3$, then

$$\lim_{x \to 1} x^3 = 1$$

Proof. Let

$$\delta = \min\{1, \varepsilon/9\}$$
.

Then $0<|x-1|<\delta$ implies 0< x<2 and therefore $|x^2+x+1|\leq 2^2+2+1=9.$ Thus

$$|f(x) - 1| = |x^3 - 1|$$

$$= |x^2 + x + 1||x - 1|$$

$$\leq 9|x - 1| \qquad (as |x^2 + x + 1| \leq 9)$$

$$< 9\left(\frac{\varepsilon}{9}\right) \qquad (as |x - 1| < \delta \leq \varepsilon/9)$$

$$= \varepsilon.$$

Problem 3. Show $\lim_{x\to 3} 2x^3 = 54$.

Problem 4. Show $\lim_{x \to 1} \frac{1}{x} = 1$. *Hint:* $\frac{1}{x} - 1 = \frac{-(x-1)}{x}$.