Here is Polina's solution to the problem of showing that $f(x) = \sqrt{x}$ is uniformly on [0, 1]. Her argument shows something a bit more general. As with our other proof of this result it is based on the algebraic identity

(1)
$$\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}$$

Proposition 1. The function $f:[0,\infty)\to\mathbb{R}$ given by $f(x)=\sqrt{x}$ is uniformly continuous. (This is more general is we have replaced [0,1] with the larger set $[0,\infty)$.)

Proof. Let $\varepsilon > 0$ and let $\delta = \varepsilon^2$. We wish to show that for for all $x, y \in [0, \infty)$

(2)
$$|x - y| < \delta$$
 \Longrightarrow $|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| < \varepsilon$.

There are two cases

Case 1. $\sqrt{x} + \sqrt{y} < \varepsilon$. Then by the triangle inequality

$$|\sqrt{x} - \sqrt{y}| \le \sqrt{x} + \sqrt{y} < \varepsilon.$$

Case 2. $\sqrt{x} + \sqrt{y} \ge \varepsilon$. Use equation (1)

$$|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}}$$

$$\leq \frac{|x - y|}{\varepsilon} \qquad \text{(The denominator is smaller)}$$

$$< \frac{\varepsilon^2}{\varepsilon}$$

$$= \varepsilon.$$

This covers all cases and we are are done.

And just to be complete here as an argument for the same result for the *n*-th root function. It is not as nice an argument, and it would be interesting to find a more intuitive proof.

Proposition 2. Let n be a positive integer. Then the function $f: [0, \infty) \to \mathbb{R}$ given by

$$f(x) = x^{1/n}$$

is uniformly continuous on $[0, \infty)$.

Proof. Again this will be based on an algebraic identity. Recall that

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + b^{n-1}).$$

Let $a = y^{1/n}$ and $b = x^{1/n}$. Then this becomes

$$y - x = (y^{1/n} - x^{1/n}) (y^{(n-1)/n} + y^{(n-2)/n} x^{1/n} + \dots + x^{(n-1)/n}).$$

Divide this by $(x^{(n-1)/n} + x^{(n-2)/n}y^{1/n} + \dots + y^{(n-1)/n})$ to get

$$y^{1/n} - x^{1/n} = \frac{y - x}{y^{(n-1)/n} + y^{(n-2)/n} x^{1/n} + \dots + x^{(n-1)/n}}$$

In what follows we want to make use of the special case where $y=x+\delta$ in which case we get

$$(x+\delta)^{1/n} = \frac{x+\delta - x}{(x+\delta)^{(n-1)/n} + (x+\delta)^{(n-2)/n} x^{1/n} + \dots + x^{1/n}}$$
$$= \frac{\delta}{(x+\delta)^{(n-1)/n} + \dots + x^{1/n}}$$

Let $\varepsilon > 0$ and $\delta = \varepsilon^n$. Let $x, y \ge 0$ with $|x - y| < \delta$. Without loss of generality we can assume that $x \le y$. This implies that $x \le y < x + \delta$.

$$|x^{1/n} - y^{1/n}| = y^{1/n} - x^{1/n} \qquad (as \ y^{1/n} \ge x^{1/n})$$

$$< (x + \delta)^{1/n} - x^{1/n} \qquad (as \ y^{1/n} < (x + \delta)^{1/n})$$

$$= \frac{\delta}{(x + \delta)^{(n-1)/n} + \dots + x^{1/n}} \qquad (the \ identity \ above)$$

$$\le \frac{\delta}{(0 + \delta)^{(n-1)/n} + \dots + 0^{1/n}} \qquad (x = 0 \ makes \ the \ denominator \ smaller)$$

$$= \frac{\delta}{\delta^{(n-1)/n}}$$

$$= \delta^{1/n}$$

$$= (\varepsilon^n)^{1/n} \qquad (as \ \delta = \varepsilon^n)$$

$$= \varepsilon.$$

Thus we have shown that if $x, y \in [0, \infty)$ and $\delta = \varepsilon^n$ that

$$|x-y| < \delta$$
 \Longrightarrow $|x^{1/n} - y^{1/n}| < \varepsilon$.

Thus $f(x) = x^{1/n}$ is uniformly continuous on $[0, \infty)$.