Math 554, Test 3 Name: Answer Key.

1. (a) Let $f: E \to E'$ be a map between metric spaces and let $a \in E$. Give the ε - δ definition of what it means for f to be **continuous** at a.

SOLUTION: For all $\varepsilon > 0$ there is a $\delta > 0$ such that if $p \in E$ with $d(p, a) < \delta$, then $d'(f(p), f(a)) < \varepsilon$.

(b) Let $f: E \to E'$ be a map between metric spaces. Define what it means for f to be **uniformly continuous**.

SOLUTION: For all $\varepsilon > 0$ there is a $\delta > 0$ such that for all $p, q \in E$, if $d(p,q) < \delta$, then $d'(f(p),f(q)) < \varepsilon$.

(c) Let $f: E \to \mathbf{R}$ and let $A \subseteq E$ be a nonemepty subset of A. Define what it means for f to achieve its maximum on A.

SOLUTION: There is a $p_0 \in A$ such that $f(a) \leq f(p_0)$ for all $a \in A$.

- (d) Fill in the blanks. Let E be a metric space and $f: E \to \mathbf{R}$ a function. Then, if E is compact and f is continuous the function f achieves its its maximum and minimum.
- (e) Let $\langle p_n \rangle_{n=1}^{\infty}$ is a sequence in the metric space E. Define $\lim_{n \to \infty} p_n = p$.

SOLUTION: For all $\varepsilon > 0$ there is a N such that if n > N, then $d(p_n, p) < \varepsilon$.

2. (a) Let $f: E \to E'$ be a map between metric spaces. State precisely what it means for the "preimage of open sets to be open".

SOLUTION: If $U \subseteq E'$ is open, then the preimage $f^{-1}[U] := \{x \in E : f(x) \in U\}$ is an open subset of E.

(b) Let $f\colon E\to E'$ and and $g\colon E'\to E''$ be continuous functions between metric spaces. Use that the preimage of open sets by continuous functions are open to prove that the composition $g\circ f$ is continuous. Hint: You are allowed to assume that for any subset $V\subseteq E''$ that $(g\circ f)^{-1}[V]=f^{-1}[g^{-1}[V]]$.

SOLUTION: We know that a function, h, between metric spaces is continuous if and only if the preimages under h of open sets are open.

Let $U \subseteq E''$ be open. Then the preimage $g^{-1}[U]$ is an open subset of E' as g is continuous. As f is continuous this implies $f^{-1}[g^{-1}[U]] = (f \circ g)^{-1}[U]$ is open in E. Therefore the preimage by $f \circ g$ of open sets is open and thus $f \circ g$ is continuous.

3. (a) Define what it means for the metric space E to be connected. (You only have to give one of the three equivalent definitions we gave.)

Solution: The three equivalent definitions we gave were

- (i) E is not the disjoint union of two nonemepty open subsets of E.
- (ii) E is not the disjoint union of two nonemepty closed subsets of E.
- (iii) The only subsets of E that are both open and closed are \varnothing and E. Any one of these is correct.
- (b) If the metric space E is connected and the function $f: E \to E'$ is continuous prove that the image f[E] is connected.

SOLUTION: Towards a contradiction assume f[E] is not connected. Then f[E] is the disjoint union of two nonemepty open subsets of f[E], say $f[E] = U \cup V$ with $U \cap V = \emptyset$, $U \cup V = f[E]$, $U, V \neq \emptyset$ and with U and V open in f[E]. By basic properties of preimages,

$$E = f^{-1}[f[E]] = f^{-1}[U \cup V] = f^{-1}[U] \cup f^{-1}[V],$$

$$f^{-1}[U] \cap f^{-1}[V] = f^{-1}[U \cap V] = f^{-1}[\varnothing] = \varnothing,$$

and $f^{-1}[U]$ and $f^{-1}[V]$ are both nonemepty. Also, as f is continuous, the preimages $f^{-1}[U]$ and $f^{-1}[V]$ are open. Thus we have shown that $E = f^{-1}[U] \cup f^{-1}[V]$ is the disjoint union of nonemepty open sets contradicting that E is connected.

4. (a) Carefully state the *intermediate value theorem* for a function $f:[a,b] \to \mathbf{R}$.

SOLUTION: Let $f: [a,b] \to \mathbf{R}$ be continuous. Then for any y between f(a) and f(b), there is an $x \in (a,b)$ with f(x) = y. (Note here that x is in the open interval (a,b) not just the closed interval.)

(b) Let $f(x) = x^3 - 4x + 2$. Show that f(x) = 0 has at least 3 solutions. *Hint*: What are the values of f(-3), f(0), f(1) and f(2)?

SOLUTION: The function f is continuous as it is a polynomial. By direct calculation

$$f(-3) = -13,$$
 $f(0) = 2,$ $f(1) = -1,$ $f(2) = 2.$

The restriction of f to [-3,0] is continuous and 0 is between f(-3) = -13 and f(0) = 2 thus there is an x_1 in the open interval (-3,0) with $f(x_1) = 0$.

Likewise the restriction of f to [0,1] is continuous and 0 is between f(0) = 2 and f(1) = -1 thus there is an x_2 in the open interval (0,1) with $f(x_2) = 0$.

Finally the restriction of f to [1,2] is continuous and 0 is between f(1) = -1 and f(2) = 2 thus there is an x_3 in the open interval (1,2) with $f(x_3) = 0$.

Thus x_1, x_2, x_3 are solutions. They are also distinct as the intervals (-3,0), (0,1), and (1,2) are disjoint. Thus there are at least three solutions.

REMARK: Some of you were a bit sloppy about showing that x_1 , x_2 , and x_3 are distinct. Note that the closed intervals [-3,0] and [0,1] are not disjoint, so if you only said that $x_1 \in [-3,0]$ and $x_2 \in [0,1]$ you still need to to a bit of arguing to show $x_1 \neq x_2$.

5. Let $f, g: E \to \mathbf{R}$ be continuous functions form a metric space E to \mathbf{R} . Prove that f + g is continuous.

SOLUTION: Let $p \in E$. We will show that f + g is continuous at p. As f is continuous there is a $\delta_1 > 0$ such that

$$d(x,p) < \delta_1 \implies |f(x) - f(p)| < \frac{\varepsilon}{2}.$$

As g is continuous there is a $\delta_2 > 0$ such that

$$d(x,p) < \delta_2 \implies |g(x) - g(p)| < \frac{\varepsilon}{2}.$$

Set $\delta = \min\{\delta_1, \delta_2\}$. Then if $d(x, p) < \delta$ we have

$$|(f+g)(x) - (f+g)(p)| \le |f(x) - f(p)| + |g(x) - g(p)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This shows that f + g is continuous at p. As p was any point of E, this shows that f + g is continuous on all of E.

ALTERNATE SOLUTION: We can also prove this by using that a function between metric spaces is continuous if and only if it does the "right thing to sequences". That is a map $h: E \to E'$ between metric spaces is continuous if and only if for every convergent sequence, $\lim_{n\to\infty} p_n = p$, in E, we have that $\lim_{n\to\infty} h(p_n) = h(p)$.

In our case we have that the functions $f,g\to {\bf R}$ are continuous so if $\lim_{n\to\infty}p_n=p$ in E then the limits

$$\lim_{n \to \infty} f(p_n) = f(p), \quad \text{and} \quad \lim_{n \to \infty} g(p_n) = g(p).$$

But by properties of limits of real valued sequences we then have

$$\lim_{n \to \infty} (f(p_n) + g(p_n)) = f(p) + g(p).$$

This shows that f+g does the right thing to sequences and therefore f+g is continuous.