Math 554

Homework

We have proven that ${\bf R}$ with its usual metric is complete. The next step is

Theorem 1. The metric space \mathbb{R}^n is complete.

Problem 1. Prove this for n=2. Hint: Let p_1, p_2, p_3, \ldots be a Cauchy sequence in \mathbb{R}^n . Then we write $p_k=(x_k,y_k)$. One way to proceed to note that for all k,ℓ we have

$$|x_k - x_\ell|, |y_k - y_\ell| \le \sqrt{(x_k - x_\ell)^2 + (y_k - y_\ell)^2} = ||p_k - p_\ell||$$

STEP 1. Use this to show that both the sequences $\langle x_k \rangle_{k=1}^{\infty}$ and $\langle y_k \rangle_{k=1}^{\infty}$ are Cauchy.

STEP 2. Show both the sequences $\langle x_k \rangle_{k=1}^{\infty}$ and $\langle y_k \rangle_{k=1}^{\infty}$ converge, say

$$\lim_{k \to \infty} x_k = x, \qquad \lim_{k \to \infty} y_k = y.$$

Let p = (x, y).

Step 3. The inequality

$$||p - p_k|| = \sqrt{(x - x_k)^2 + (y - y_k)^2} \le \sqrt{2} \max\{|x - x_k|, |y - y_k|\}$$
 holds.

Step 4. Finish the proof.

Recall that if (E, d) is a metric space and $S \subset E$, then S is also a metric space with the same metric (recall the restriction of d from $E \times E$ to $S \times S$. That is for $s, t \in S$ we still use the distance d(s, t) as we used in E.

Theorem 2. Let (E,d) be a complete metric space and $S \subseteq E$. Then (S,d) is complete if and only if S is closed in E.

Problem 2. Prove this. *Hint:* First assume that S is closed and let $\langle s_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in S. Then $\langle s_n \rangle_{n=1}^{\infty}$ is also a Cauchy in E and as E is complete the sequence converges to a point of E. Now show this point is in S (it might be useful to recall that a closed set contains its limit points).

Second assume that S is complete as a metric space and let p be a limit point of S. Then there is a sequence $\langle s_n \rangle_{n=1}^{\infty}$ that converges to p. This sequence will be a Cauchy sequence and therefore converge to a point of S. Show this point is p (and here is might be useful to recall that a set that contains all its limit points is closed).

Definition 3. A sequence of real numbers $a_1, a_2, a_3, ...$ is **monotone** increasing iff $a_1 \leq a_2 \leq a_3 \leq \cdots$. It is **monotone** decreasing iff $a_1 \geq a_2 \geq a_3 \geq \cdots$. It is **monotone** if it is either monotone increasing or monotone decreasing.

Theorem 4. (a) A monotone increasing sequence of real numbers that is bounded from above is convergent.

(b) A monotone decreasing sequence of real numbers that is bounded from below is convergent.

Problem 3. Prove part (a) of this. *Hint:* Let the sequence be $a_1 \le a_2 \le a_3 \le \cdots$. As it is bounded above

$$a = \sup\{a_1, a_2, a_3, a_4, \ldots\}$$

exists. Let $\varepsilon > 0$. Show that there is a N such that $a - \varepsilon < a_N \le a$ and that for this N if n > N then $|a - a_n| < \varepsilon$.

Proposition 5. Every sequence a_1, a_2, a_3, \ldots of real numbers has a monotone subsequence.

Problem 4. Prove this. *Hint*: This is problem 14 on page 62 of the text. See the hint there. \Box

Proposition 6. Let $\langle p_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in the metric space E. Assume that some subsequence $\langle p_{n_k} \rangle_{k=1}^{\infty}$ converges. Then the original sequence $\langle p_n \rangle_{n=1}^{\infty}$ converges.

Problem 5. Prove this. (Note we are *not* assuming that E is complete. This Proposition is useful in showing that spaces are complete as in the next problem.)

Problem 6. Combine Proposition 5 and Theorem 4 to give another proof that the real numbers are complete.