Quiz # 8

Name: Key

You must show your work to get full credit.

1. Define d is a **divisor** of n where d and n are integers.

2. Show that if n is odd that $n^2 - 1$ is divisible by 4.

In tege r. Thus

$$1^2 - 1 = (2k+1)^2 - 1$$
 $= 4k^2 + 4k + 1 - 1$
 $= 4(k^2 + k)$
 $= 4(14 + k)$
 $= 4(14 + k)$
 $= 4(14 + k)$
 $= 1$

Thus

 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$

3. Show that if a and b are divisible by d then so is 3a + 4b.

a divisible by
$$d \Rightarrow a = kd$$
 for some k
b divisible by $d \Rightarrow a = kd$ for some k

$$3a + 4b = 3kd + 4ld$$

$$= (3k + 4l)d$$

$$= (14 + eser)d$$
Thus $d = (13a + 4b)$