Mathematics 574 Homework

We have seen that the number of solutions to

$$x_1 + x_2 + \dots + x_n = r$$

in nonnegative integers is $\binom{n+r-1}{n-1} = \binom{n+r-1}{r}$. As Max pointed out in class this implies that the number of solutions in nonnegative integers to

$$x_1 + x_2 + \dots + x_n \le r$$

is

$$\sum_{k=0}^{r} \binom{n+k-1}{k}.$$

But we can count the number of solutions to $x_1 + x_2 + \cdots + x_n \leq r$ in anther way. Add anther variable y and look for nonnegative solutions to

$$x_1 + x_2 + \dots + x_n + y = r$$

Note that if (x_1,\ldots,x_n,y) is a solution to this in nonnegative integers, then (x_1,\ldots,x_n) is a solution to $x_1+x_2+\cdots+x_n\leq r$ in nonnegative integers. Conversely if (x_1,\ldots,x_n) is a solution to $x_1+x_2+\cdots+x_n\leq r$ in nonnegative integers and we set $y=r-x_1-x_2-\cdots-x_n$ then (x_1,\ldots,x_n,y) is a solution to $x_1+x_2+\cdots+x_n+y=r$ in nonnegative integers. Thus the two problems have the same number of solutions. Thinking of $y=x_{n+1}$ the number of solutions to $x_1+x_2+\cdots+x_n+x_n+x_n+1=r$ is

$$\binom{n+1+r-1}{r} = \binom{n+r}{r}.$$

1. Based on this explain why

$$\sum_{k=0}^{r} \binom{n+k-1}{k} = \binom{n+r}{r}.$$

2. Do the change of variable $n \mapsto n+1$ in the formula of the last problem to get

$$\sum_{k=0}^{r} \binom{n+k}{k} = \binom{n+1+r}{r}.$$

This is Problem 1.53 from the text.

3. Use the last problem to show

$$\sum_{k=0}^{r} \binom{n+k}{n} = \binom{n+1+r}{n+1}.$$

This is Problem 1.67 from the text.