Mathematics 300

Quiz 17 Name: Answer Key

You must show your work to get full credit.

We have seen earlier in the term that if

 $a \equiv b \mod n$ and $c \equiv d \mod n$

then

 $ac \equiv bd \mod n$.

1. Use the above to show

 $a \equiv b \mod$

implies for all positive integers n

$$a^n \equiv b^n \mod n$$
.

Solution. The base case is n = 1 where the statement is $a \equiv b \mod n$, which is what is given. So this holds.

For the induction step assume that

$$a^n \equiv b^n \mod n$$

holds. We will show this holds for with n replace by n+1. We are given that $a \equiv b \mod n$. Multiplying both sides of (1) by this we get

$$a \cdots a^n \equiv b \cdot b^n \mod n$$

that is

$$a^{n+1} \equiv b^{n+1} \mod n$$
.

This closes the induction.

2. Use Problem 1 to show that if that $7^n - 1$ is divisible by 6 for all positive integers n. hint: Showing that $7^n - 1$ is divisible by 6 is the same as showing $7^n - 1 \equiv 0 \mod 6$.

Solution. Note that $7 \equiv 1 \mod 6$ and therefore by Problem 1 we have $7^n \equiv 1^n \mod 6$. Thus

$$7^{n} - 1 \equiv 1^{n} - 1 \mod 6$$
$$\equiv 1 - 1 \mod 6$$
$$\equiv 0 \mod 6$$

But $7^n - 1 \equiv 0 \mod 6$ implies $6 \mid (7^n - 1)$ as required.