Mathematics 300

т.			
⊢H'i	n	a	ı

You must show your work to get full credit.

1. Write out the set $\{x \in \mathbb{Z} : (x+2)(x-3) < 0\}$.

The set is _____

2. Let $A = \{0, 1\}$ and $B = \{1, 2, 3\}$. Write out the elements of the following:

$$A \cup B = \underline{\hspace{2cm}}$$

$$A \cap B =$$

$$B - A =$$

The power set of A is $\mathcal{P}(A) = \underline{\hspace{1cm}}$

3. Draw the Venn diagram for $(A \cap C) - B$.

4. (a) Make the truth tables for $P \implies Q$ and $\sim (P \land \sim Q)$.

(b) Are $P \implies Q$ and $\sim (P \land \sim Q)$ logically equivalent? Your answer should involve at least one English sentence.

5.	What is the	negation	of the	statement	"Every	one	taking	this	final	will	get ai	n A	on it."?

6. Let for each of the integers $n = 1, 2, 3, \ldots$ let $A_n = \{1, 2, \ldots, n\}$. Then find:

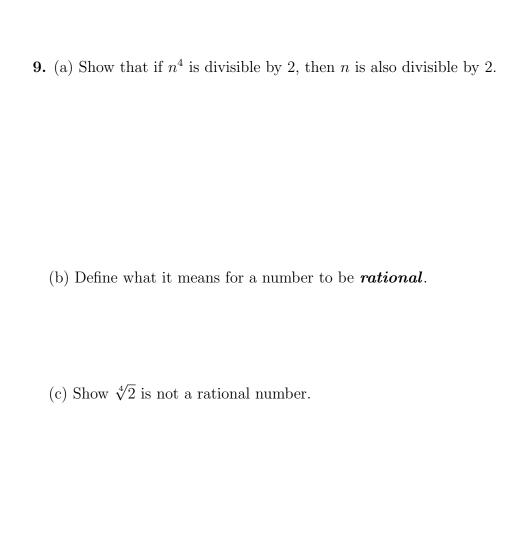
$$\bigcup_{n=1}^{\infty} A_n = \underline{\qquad}$$

$$\bigcap_{n=1}^{\infty} A_n = \underline{\qquad}$$

7. (a) Define what it means for the integer
$$x$$
 to be divisible by the integer m . (This definition should have some English and not just symbols.)

(b) Prove that if a and b are divisible by 3 then $4a^3 + 6ab$ is divisible by 27.

8. Give a proof or disproof that every multiple of 4 is the sum of two odd numbers.



10. Show that α is irrational if and only if $3+2\alpha$ is irrational.

11. Let $A = \{15a + 10b : a, b \in \mathbb{Z}\}$ and $B = \{5c : c \in \mathbb{Z}\}$. Prove A = B.

12. Use that $10 \equiv 1 \mod 9$ to explain why $9.875,184 \equiv 9+8+7+5+1+8+4 \mod 9$

13. Prove or give a disproof: There exist sets A and B such that $A = A \cap B$

14. Show that if $(x + 2y)^2 = x^2 + (2y)^2$, then x = 0 or y = 0.

- **15.** (a) Define $x \equiv y \mod n$.
 - (b) Show that if $x \equiv y \mod n$, then for any integer a that $ax \equiv ay \mod n$.

16. (a) Explain briefly how and why a proof by induction works.

(b) Use induction to prove that for any real numbers a and r with $r \neq 1$ that

$$a + ar + ar^{2} + \dots + ar^{n} = \frac{a - ar^{n+1}}{1 - r}.$$

17.	Use induction to show that $n^3 + 5n$ is divisible by 3 for all positive integers n .
18. {1}	On the set $A = \{1, 2, 3, 4\}$ we have an equivalence relation, R , what has the equivalence classes $\{2\}$, and $\{3, 4\}$. Write out R as a set of ordered pairs.
()	R =
19.	Given the addition and multiplication tables for the equivalence classes of integers mod 3.