NOTES ON ANALYSIS

RALPH HOWARD

1. The real numbers.

1.1. **Fields.** A field is an algebraic object where we can do the usual operations of high school algebra. That is addition, subtraction, multiplication, and division.

Definition 1. A *field* is a set F with operations¹ +, called *addition*, and \cdot , called *multiplication*, such that

(a) both operations are associative:

$$(x+y) + z = x + (y+z)$$
 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

for all $x, y, z \in F$.

(b) both operations are *commutative*:

$$x + y = y + x$$
 $x \cdot y = y \cdot x$

for all $x, y \in F$.

(c) Multiplication distributes over addition:

$$x \cdot (y+z) = x \cdot y + x \cdot z.$$

for all $x, y, z \in F$.

(d) There are additive and multiplicative *identities*. That is there are $0 \in F$ and $1 \in F$ such that

$$x + 0 = x$$
 $x \cdot 1 = x$

for all $x \in F$.

(e) Every element has an *additive inverse*. That is for every $x \in F$ there is an element $y \in F$ such that

$$x + y = 0$$
.

(f) Every nonzero element has a *multiplicative inverse*. There is for $x \in F$, with $x \neq 0$, there is an element $z \in F$ such that

$$xz = 1$$
.

(g) F has at least two elements.

Date: September 7, 2016.

¹To be a bit more precise we should call these **binary operations** in that take an ordered pair of elements of F, say (x, y), and each gives a unique output x + y or $x \cdot y$.

This definition requires a bit of comment. First as to the additive identity the definition as it stands does not rule out the possibility that there are two additive identities. that is there are $0, 0' \in F$ with

$$x + 0 = x$$
 and $x + 0' = x$

for all $x \in F$. In this case

$$0' = 0' + 0$$
 $(x + 0 = x \text{ with } x = 0')$
= $0 + 0'$ (addition is commutative)
= 0 $(x + 0' = x \text{ with } x = 0).$

So 0 and 0' are the same element.

Problem 1. Use a variant on this argument to show that if $1, 1' \in F$ satisfy

$$x \cdot 1 = x$$
 and $x \cdot 1' = x$

for all $x \in F$ that 1 = 1'. Thus the multiplicative identity is unique.

We also have that additive inverses are unique. Let $x \in F$ and assume that $y, y' \in F$ such that

$$x + y = 0$$
 and $x + y' = 0$.

Then

$$y' = y' + 0$$

$$= y' + (x + y)$$

$$= (y' + x) + y$$

$$= (x + y') + y$$

$$= 0 + y$$

$$= y + 0$$

$$= y + 0$$

$$= (x + y') + y$$

$$= (x + y')$$

Thus the additive inverse of any element any element is unique. From now on we denote the additive inverse of $x \in F$ as -x and use the abbreviation

$$x - y := x + (-y).$$

Proposition 2. For any $x \in F$ the equality

$$-(-x) = x$$

holds.

Proof. By definition -(-x) is the additive inverse of -x. But we also have

$$-x + x = x + (-x)$$
 (commutative of additive)
= 0 (-x is additive inverse of x)

This shows that x is also an additive inverse of -x. As additive inverses are unique we have -(-x) = x.

Problem 2. Modify the argument above to show that the multiplicative inverse of $x \in F$ with $x \neq 0$ is unique.

If $x \in F$ and $x \neq 0$ we now denote the unique multiplicative inverse of x by either of the two notations.

multiplicative inverse of $x = \frac{1}{x} = x^{-1}$.

and write

$$yx^{-1} := \frac{y}{x}.$$

Problem 3. Modify one of the arguments above to show if $x \in F$ with $x \neq 0$ then

$$(x^{-1})^{-1} = x.$$

That is

$$\frac{1}{\left(\frac{1}{x}\right)} = x.$$

Here are several results that we are so use to seeing that it seems irritating to have to prove them.

Proposition 3. In a field -0 = 0.

Problem 4. Prove this. *Hint*: 0+0=0 so 0 is the additive inverse of 0. \square

Problem 5. In a field, F,

$$x \cdot 0 = 0$$

for all $x \in F$.

Problem 6. Prove this. *Hint:* First show $x \cdot 0 = x \cdot 0 + x \cdot 0$ by justifying the steps in the following.

$$x \cdot 0 = x \cdot (0+0)$$
$$= x \cdot 0 + x \cdot 0.$$

Now add the additive inverse of $x \cdot 0$ to both sides of $x \cdot 0 = x \cdot 0 + x \cdot 0$. \square

The associativity law implies that for any three elements $x_1, x_2, x_3 \in F$ that

$$(x_1x_2)x_3 = x_1(x_2x_3).$$

As this is the only two ways to group the product of three elements we can write the product of three elements as

$$x_1 x_2 x_3$$

without ambiguity. There are five ways to group four elements in a product

$$x_1(x_2(x_3x_4)), x_1((x_2x_3)x_4), (x_1x_2)(x_3x_4), (x_1(x_2x_2))x_4, ((x_1x_2)x_3)x_4$$

These are all equivalent. We see this by showing they are all the same as $x_1(x_2(x_3x_4))$.

$$x_1((x_2x_3)x_4) = x_1(x_2(x_3x_4))$$
 as $(x_2x_3)x_4 = x_2(x_3x_4)$
 $(x_1x_2)(x_3x_4) = x_1(x_2(x_3x_4))$ as $(x_1x_2)y = x_1(x_2y)$ with $y = x_3x_4$
 $(x_1(x_2x_3))x_4 = x_1((x_2x_3)x_4)$ as $(x_1y)x_4 = x_1(yx_4)$ with $y = x_2x_3$
 $= x_1(x_2(x_3x_4))$ as $(x_2x_3)x_4 = x_2(x_3x_4)$
 $((x_1x_2)x_3)x_4 = (x_1x_2)(x_3x_4)$ as $(yx_3)x_4 = y(x_3x_4)$ with $y = x_1x_2$
 $= x_1(x_2(x_3x_4))$ as $(x_1x_2)y = x_1(x_2y)$ with $y = x_3x_4$

So again we can write the product

$$x_1x_2x_3x_4$$

without ambiguity as all the groupings are equal. In light of this the following will most likely not surprise you.

Proposition 4. Let x_1x_2, \ldots, x_n be elements of the field. Then the associativity law implies that any two groupings of the product $x_1x_2 \cdots x_n$ are equal.

Problem 7. Prove this. *Hint:* Use induction to show that any grouping is equal to the grouping

$$x_1(x_2(x_3(x_4\cdots x_n)\cdots)).$$

This is the grouping where the parenthesis are moved as far to the right as possible. For the rest of this problem call this the **standard form** of the product.

Here is the induction step in going from n=5 to n=6. For n=5 the standard form is

$$x_1(x_2(x_3(x_4x_5))).$$

Let p be some grouping of x_1, x_2, \ldots, x_6 . We first consider the case that p is of the form

$$p = x_1(p_2)$$

where p_2 is a product of x_2, \ldots, x_6 . Then p_2 is a product of n = 5 elements and thus by the induction hypothesis $p_2 = x_2(x_3(x_4(x_5x_6)))$. But then $p = x_1(p_2) = x_1(x_2(x_3(x_4(x_5x_6))))$ can be put in standard form.

This leaves the case where $p = (p_1)(p_2)$ where for some k with $2 \le k \le 5$ we have

$$p = (p_1)p_2$$

where p_1 is a product of x_1, \ldots, x_k and p_2 is a product of x_{k+1}, \ldots, x_6 . Then, as p_1 has less than n = 6 factors it can be put in standard. This implies that $p_1 = x_1(q)$ where q is a product of x_2, \ldots, x_k . Therefore

$$p = (p_1)p_2 = (x_1q)p_2 = x_1(qp_2).$$

But qp_2 only involves the variables x_2, \ldots, x_6 so anther application of the induction hypothesis implies that qp_2 can be put standard form. But then $p = x_1(qp_2)$ is in standard form.

To complete the proof you show show that this argument can be used to show that if it is true for n variables, then it is true of n + 1 variables. \square

In light from now on we write products $x_1x_2\cdots x_n$ without putting the the parenthesis. There is a similar proposition about parenthesis and and sums, and we will write also write sums as $x_1 + x_2 + \cdots + x_n$ without parenthesis.

The following could be summarized by saying that much of the basic results you know from basic algebra still holds in fields.

Proposition 5. Let F be a field. Then

(a) If $a, b, c, d \in F$ and $b, c \neq 0$ then

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

- (b) If $a, b \in F$ and a, b = 0, then a = 0 or b = 0.
- (c) (This is just a useful restatement of part (b).) If $a, b \in F$ and $a, b \neq 0$ then $ab \neq 0$.
- (d) If the elements a_1, a_2, \ldots, a_n F are all nonzero, then so is the product and

$$(a_1 a_2 \cdots a_{n-1} a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_2^{-1} a_1^{-1}.$$

(e) If $a, b \in F$ and $a^2 = b^2$, then $a = \pm b$.

Problem 8. Prove this.

Problem 9. Here is anther fact that will likely come up at least one during the term. Let a, b, c, d, e, f be elements of the field F with

$$ad - bc \neq 0$$
.

Then the equations

$$ax + by = e$$
$$cx + dy = f$$

have a unique solution. This solution is

$$x = \frac{ed - bf}{ad - bc}, \qquad y = \frac{af - ec}{ad - bd}.$$

Hint: To find x multiply the first equation by d and the second by b and then subtract the two. A similar trick works to find y.

2. Square roots.

Theorem 6. If m is a positive integer that is not a perfect square (that is there is no integer, k, with $k^2 = m$), then \sqrt{m} is irrational.

Proof. Towards a contradiction assume $x = \sqrt{m}$ is a rational number that is not an integer. Let n be the smallest positive integer such that nx is an

Let |x| be the greatest integer in x. Then $0 \le x - |x| < 1$. And as x is not an integer $x \neq |x|$ and so $0 < x - \lfloor x \rfloor < 1$. Let $p = n(x - \lfloor x \rfloor)$. Then 0 and <math>p = nx - n|x| is an integer. But, using that $x^2 = m$,

$$px = n(x - |x|)x = nx^2 - (nx)|x|) = nm - (nx)|x|$$

which is an integer. As p < n this contradicts that n was the smallest positive integer with nx an integer.

Proposition 7. Let $a \leq x_1, x_2 \leq b$. Then

$$|x_2 - x_1| \le (b - a).$$

Problem 10. Prove this.

Proposition 8. Let $A \geq 0$ be such that there is a constant M > 0 such that for all $\varepsilon > 0$ the inequality

$$A \leq M\varepsilon$$

holds. Then A = 0.

Problem 11. Prove this.

Theorem 9. Every positive real number has a unique positive square.

Problem 12. Prove this. *Hint:* Let a be a positive real number. Let

$$S = \{x \in \mathbb{R} : x \ge 0 \text{ and } x^2 \le a\}$$

- (a) Show that S is bounded above. (One way is to note that as a > 0 and $x^{2} \le a$, then $x^{2} \le a < a^{2} + 2a + 1 = (a + 1)^{2}$ and therefore x < a + 1.)
- (b) As S is bounded above the least upper bound axiom applies and thus Shas a least upper bound. Let

$$r = \sup(S)$$
.

Let $0 < \varepsilon < r$. Show

- (i) $(r+\varepsilon)^2 > a$,
- (ii) $(r-\varepsilon)^2 < a$.

For the first note that $r + \varepsilon > r = \sup(S)$ and so $r + \varepsilon \notin S$. For the second use that $0 < r - \varepsilon < r = \sup(S)$. Thus there is an $x \in S$ with $r - \varepsilon < x$ and therefore $(r - \varepsilon)^2 < x^2$. (c) Show $(r - \varepsilon)^2 < r^2 < (r + \varepsilon)^2$.

- (d) Combine the last two steps to conclude

$$(r-\varepsilon)^2 \le a \le (r+\varepsilon)^2$$
 and $(r-\varepsilon)^2 < r^2 < (r+\varepsilon)^2$.

and now use Proposition 7 to conclude

$$|a - r^2| \le (r + \varepsilon)^2 - (r - \varepsilon)^2 = 4r\varepsilon.$$

- (e) Now use Proposition 8 to show $r^2 = a$.
- (f) Finally show that the positive square root of a is unique.

Department of Mathematics, University of South Carolina, Columbia, S.C. 29208, USA

 $E\text{-}mail\ address: \verb|howard@math.sc.edu||} URL: \verb|www.math.sc.edu|/\sim \verb|howard||$