Mathematics 300 Homework, October 6, 2017.

You should read §5.3 (Pages 107–109) in the text. This is some guidelines for mathematical writing. Problems 3 and 4 on this sheet will be collected.

For the rest of this homework we will development a little of the theory of congruences. The official definition of $a \equiv b \pmod{n}$ is that $n \mid (a - b)$. This means that this is an integer q such that a - b = qn. We will often just jump from the statement that " $a \equiv b \pmod{n}$ " to saying that "there is an integer q such that a - b = qn without writing the intermediate step that of saying that $n \mid (a - b)$.

Proposition 1. For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ the congruence $a \equiv a \pmod{n}$ holds.

Proof. We have a-a=0 and $n\mid 0$, so $a\equiv a\,(\mathrm{mod}\,n)$ by the definition of congruence. \square

Proposition 2. If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.

Proof. We are given $a \equiv b \pmod{n}$. Therefore there is an integer q such that

$$a - b = qn$$
.

Therefore

$$b - a = -(a - b) = (-q)n$$

and -q is an integer. Thus $n \mid (b-a)$ which shows that $b \equiv a \pmod{n}$. \square

Proposition 3. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proof. We are given $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. Therefore there are integers q_1 and q_2 such that

$$a - b = q_1 n$$
$$b - c = q_2 n$$

Therefore (and here we use that add and subtract the same quantity trick):

$$a-c=a-b+b-a=(a-b)+(b-c)=q_1n+q_2n=(q_1+q_2)n$$
 and $q_1+q_2\in\mathbb{Z}$ which shows that $n\mid (a-c)$ and so $a\equiv c\,(\mathrm{mod}\,n)$. \square

Proposition 4. If $a \equiv b \pmod{n}$ and $c \equiv d$ then $a + c \equiv b + d \pmod{n}$.

Proof. We are given $a \equiv b \pmod{n}$ and $c \equiv d$ and therefore there are integers q_1 and q_2 such that

$$a - b = q_1 n$$
$$c - d = q_2 n.$$

Therefore

$$(a+c)-(b+d)=(a-b)+(c-d)=q_1n+q_2n=(q_1+q_2)n$$
 and $q_1+q_2\in\mathbb{Z}$. Therefore $n\mid ((a+c)-(b-d))$. This shows that $a+c\equiv b+d\ (\mathrm{mod}\ n)$ as required.

Proposition 5. If $a \equiv b \pmod{n}$ then for any $c \in \mathbb{Z}$ the congruence $ac \equiv bc \pmod{n}$ holds.

Problem 1. Prove this. (For solution page down.) □

Proposition 6. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.

Problem 2. Prove this. *Hint:* One way to combine Proposition 5 with Proposition 3.

Problem 3. Show that if two integers, x and y, have the same parity, then $x \equiv y \pmod{2}$.

Problem 4. Let n be a positive integer. Show that if $a, b \in \mathbb{Z}$ have the same remainder when divided by n, then $a \equiv b \pmod{n}$.

Proof of Proposition 5. We are given $a \equiv b \pmod{n}$. Therefore there is an integer q such that

$$a - b = qn$$
.

Then

$$ac - bc = (a - b)c = qnc$$

and qn is an integer. Thus $n \mid (ac - bc)$, which implies $ac \equiv bc \pmod{n}$. \square

First proof of Proposition 6. We are given the two congruences

$$a \equiv b \, (\text{mod} \, n)$$

$$c \equiv d \pmod{n}$$

By Proposition 5 we can multiply the first of these by c get

$$ac \equiv bc \pmod{n}$$
.

We can then use Proposition 5 again to multiply both sides of $c \equiv d \pmod{n}$ by b to get

$$bc \equiv bd \pmod{n}$$
.

We can now use the transitive property of Proposition 3 to conclude that

$$ac \equiv bc \pmod{n}$$

 $\equiv bd \pmod{n}$

and thus $ac \equiv bd$.

Second proof of Proposition 6. We are given the two congruences

$$a \equiv b \, (\operatorname{mod} n)$$

$$c \equiv d \pmod{n}$$
.

These imply that there are integers q_1 and q_2 such that

$$a-b=q_1n$$

$$c - d = q_2 n$$

Then (and this is a more sophisticated version of the add and subtract the same quantity trick)

$$ac - bd = ac - bc + bc - bd$$
$$= (a - b)c + b(c - d)$$
$$= (q_1n)c + b(q_2n)$$
$$= (q_1c + q_2b)n$$

and $q_1c + q_2b$ is an integer. Thus $n \mid (ac - bd)$ which shows that $ac \equiv bd \pmod{n}$.