Mathematics 554H/703I Test 3 Name: Answer Key

1. (a) Let $f: E \to E'$ be a map between metric spaces and let $x_0 \in E$. Define what it means for f to be continuous at x_0 . (The ε - δ definition.)

Solution. For every $\varepsilon > 0$ there is a $\delta > 0$ such that for $x \in E$, we have $d(x, x_0) < \delta$ implies $d(f(x), f(x_0)) < \varepsilon$.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = 2x^2$. Prove directly from the definition that f is continuous at the point x = 2.

Solution. We do a standard preliminary calculation:

$$|f(x) - f(2)| = |2x^2 - 2(2)^2| = 2|x + 2||x - 2| \le (|x| + 2)|x - 2|.$$

If |x-2| < 1, then we have

$$|x| = |2 + (x - 2)| \le 2 + |x - 2| < 2 + 1 = 3.$$

Using this in the preliminary calculation gives that

$$|f(x) - f(2)| \le (|x| + 2)|x - 2| \le (2 + 2)|x - 2| = 4|x - 2|$$

holds whenever |x-2| < 1. Let $\varepsilon > 0$ and set

$$\delta = \min \left\{ 1, \frac{\varepsilon}{4} \right\}.$$

Then if $|x-2| < \delta$ we have

$$|f(x) - f(2)| \le 4|x - 2|$$

$$< 4\delta$$

$$\le 4\frac{\varepsilon}{4}$$

$$= \varepsilon$$

which shows that f(x) is continuous at x = 2.

(c) Let E be a metric space and $g,h: E \to \mathbb{R}$ functions that are continuous at the point $x_0 \in E$. Prove directly from the definition of continuity that f = 3g - 4h is continuous at x_0 .

Solution. Here we do a anther preliminary calculation:

$$|f(x) - f(x_0)| = |(3g(x) - 4h(x)) - (3g(x_0) - 4h(x_0))|$$

$$\leq 3|g(x) - g(x_0)| + 4|h(x) - h(x_0)|.$$

Let $\varepsilon > 0$. Then by the continuity of g at x_0 , there is a $\delta_1 > 0$ such that

$$d(x, x_0) < \delta$$
 implies $|g(x) - g(x_0)| < \frac{\varepsilon}{6}$.

The continuity of h at x_0 gives a $\delta_2 > 0$ such that

$$d(x, x_0) < \delta_2$$
 implies $|h(x) - h(x_0)| < \frac{\varepsilon}{8}$.

Let

$$\delta = \min\{\delta_1, \delta_2\}.$$

Then $d(x, x_0) < \delta$ implies

$$|f(x) - f(x_0)| \le 3|g(x) - g(x_0)| + 4|g(x) - g(x_0)|$$

$$< 3\frac{\varepsilon}{6} + 4\frac{\varepsilon}{8}$$

$$= \varepsilon.$$

This shows that f is continuous at x_0 .

- **2.** Given example of (you do not have to prove your example works and defining a function by drawing its graph is acceptable)
- (a) A function $f: \mathbb{R} \to \mathbb{R}$ that is continuous at every point other than x = 2 and x = 3.

Solution. One example would be

$$f(x) = \begin{cases} 1, & 2 \le x \le 3; \\ 1, & \text{otherwise.} \end{cases}$$

Anther example is

$$f(x) = \begin{cases} \frac{1}{(x-2)(x-3)}, & x \neq 2, 3\\ 42, & x = 2 \text{ or } x = 3. \end{cases}$$

(b) A function $g: \mathbb{R} \to \mathbb{R}$ such that $\lim_{x\to 0} f(x)$ exists, but g is not continuous at 0.

Solution. Maybe the easiest example is

$$g(x) = \begin{cases} 0, & x \neq 0; \\ 1, & x = 0. \end{cases}$$

(c) A function $h: \mathbb{R} \to \mathbb{R}$ that is not continuous at any point of \mathbb{R} .

Solution. As we did in class the standard example is

$$h(x) = \begin{cases} 1, & x \text{ is a rational number.} \\ 0, & x \text{ is irrational.} \end{cases}$$

3. Let $f: E \to E'$ a map between metric spaces that is continuous at every point. Prove that if $U \subseteq E'$ is an open set in E', that the preimage $f^{-1}[U]$ is open in E. (That is prove that the preimage of open sets by continuous functions are open.)

Solution. Let $x_0 \in f^{-1}[U]$. We need to find a ball centered at x_0 that is contained in $f^{-1}[U]$. As $x_0 \in f^{-1}[U]$ we have $f(x_0) \in U$. As U is open there is a $\varepsilon > 0$ such that $B(f(x_0), \varepsilon) \subseteq U$. Because f is continuous at x_0 there is a $\delta > 0$ such that

$$d(x, x_0) < \delta$$
 implies $d(f(x), f(x_0)) < \varepsilon$.

That is $d(x, x_0) < \delta$ implies

$$f(x) \in B(f(x_0), \varepsilon) \subseteq U$$
.

This in turn implies $x \in f^{-1}[U]$. That is we have shown $x \in B(x_0, \delta)$ implies $x \in f^{-1}[U]$. Thus $B(x_0, \delta) \subseteq f^{-1}[U]$. Therefore $f^{-1}[U]$ is open.

4. (a) Let E be a metric space. Define what it means for E to be connected.

Solution. The metric space E is connected if and only if it is not the disjoint union of two nonempty open set. Explicitly this means that there are no nonempty open set A and B of E such that

$$E = A \cup B$$
 and $A \cap B = \emptyset$.

(b) Let E be a connected metric space and let $f: E \to \mathbb{R}$ be a continuous function. Let $p, q \in \mathbb{R}$ with f(p) < 0 and f(q) > 0. Prove there is an $x \in E$ with f(x) = 0.

Solution. Recall that if a metric space is not connected, then it has a **disconnection**, that is disjoint nonempty open set A and B such that $E = A \cup B$.

Towards a contradiction assume that there is no $x \in E$ with f(x) = 0. Then the image $f[E] \subseteq (-\infty, 0) \cup (0, \infty)$ and therefore

$$E = f^{-1}[(-\infty, 0)] \cup f^{-1}[(0, \infty)].$$

As f is continuous and the sets $(-\infty,0)$ and $(0,\infty)$ are both open the sets $f^{-1}[(-\infty,0)]$ and $f^{-1}[(0,\infty)]$ are open. Both are nonempty as $p \in f^{-1}[(-\infty,0)]$ and $q \in f^{-1}[(0,\infty)]$. Thus

$$E = f^{-1}[(-\infty, 0)] \cup f^{-1}[(0, \infty)]$$

is a disconnection of E, contradicting that E is connected. \square

5. Prove that the equation $x^3 - 8x + 2 = 0$ has at least 3 real roots.

Solution. Let $f(x) = x^3 - 8x + 2$. Then f is a polynomial and thus is continuous. It is easy to check that

$$f(-3) = -1$$

$$f(0) = 2$$

$$f(1) = -5$$

$$f(3) = 5.$$

Then f(x) has opposite signs on the endpoints of the interval [-3,0] and so there is a $x_1 \in (-3,0)$ with $f(x_1) = 0$. Likewise on each of the intervals [0,1] and [1,3] f(x) has opposite signs at the endpoints and whence that are $x_2 \in (0,1)$ and $x_3 \in (1,3)$ with $f(x_2) = f(x_3) = 0$. Therefore f(x) = 0 has at least three roots.

6. Let E be a metric space and for $p \in E$ we have seen that the function $f_p \colon E \to \mathbb{R}$ given by

$$f_p(x) = d(x, p)$$

is continuous. Use this to show that if $p, q \in E$ that the set

$$S = \{x : d(x, p) > d(x, q)\}$$

is open.

Solution. Note that we can write S as

$$S = \{x : d(x,p) > d(x,q)\}$$

$$= \{x : f_p(x) > f_q(x)\}$$

$$= \{x : f_p(x) - f_q(x) > 0\}$$

$$= \{x : f(x) > 0\}$$

$$= f^{-1}[(0,\infty)]$$

where f is the functions

$$f(x) = f_p(x) - f_q(x).$$

The function f is the difference to two continuous functions and therefore f is continuous. This shows that S is the preimage of an open set by a continuous function and therefore S is open.