Mathematics 172 Homework.

Here we look a bit more at discrete dynamical systems

$$N_t = f(N_{t-1}).$$

We first review dealing with these on the calculator.

Assume that we have a population grows by

$$N_t = 20 - .4N_{t-1}, \qquad N_0 = 2$$

and we wish to compute what happen in the first 50 years.

Set your calculator sf MODE to SEQ and in WINDOW set

nMin=0

nMax=50 (This 50 corresponds to us wanting the first 50 years.)

Then in the Y= window set

nMin=0

u(n)=20-.4u(n-1)

u(nMin)=2

Then 2ND TABLE gives

n	u(n)	
0	2	
1	19.2	
2	12.32	
3	15.072	
4	13.971	
5	14.412	
6	14.235	

If we want N_{20} , then we could scroll down the table, but as Emma pointed out in class today we can do 2ND CALC 1:VALUE and let n = 10 to get (at the bottom of the screen) that n = 10 and Y=14.285714 Thus

$$N_{10} = 14.284426$$

Likewise we find

 $N_{10} = 14.284426$

 $N_{20} = 14.285714$

 $N_{30} = 14.285714$

 $N_{40} = 14.285714$

 $N_{50} = 14.285714$

So we see that by time t = 20 that N_t has stabilized to the value 14.285714

Problem 1. Do 2ND CALC 1:VALUE and let n = 51. Then you get the message ERR: INVALID. Why is this?

Solution. The reason is that we set nMax=50 so the calculator only computed the values $N_0=u(0), N_1=u(1), \ldots, N_{50}=u(50)$ and stopped there. If for some reason we needed N_{51} , or N_{75} we could just set nMax=75 or

what ever value is big enough. The down side of using a big value of nMax is that computing the extra values take extra time. If you want to experience a longish wait, set nMax=1000 and compute N_{999} .

Problem 2. For the dynamical system we have just been looking at:

$$N_t = 20 - .4n_{t-1}$$

find the equilibrium point.

Solution. To find the equilibrium point solve

$$20 - .4N = N$$

to get

$$N = \frac{20}{1.4} = 14.2857142857$$

which should look familiar from the above.

Problem 3. For the dynamical system

$$P_t = P_{t-1} + .3P_{t-1} \left(1 = \frac{P_{t-1}}{100} \right)$$

- (a) Find the equilibrium points. Solution. They are $P_* = 0$ and $P_* = 100$.
- (b) If $P_0 = 5$ compute P_1 , P_2 , P_5 , P_{10} , P_{20} , P_{30} , P_{40} and P_{50} . Solution:

$$P_1 = 6.425$$

$$P_2 = 8.228658$$

$$P_5 = 16.773947$$

$$P_{10} = 45.270958$$

$$P_{20} = 95.598480$$

$$P_{30} = 99.867674$$

$$P_{40} = 99.996255$$

$$P_{50} = 99.999894$$