Mathematics 172 Homework.

In the last class we looked at a system

$$\Delta S = -bSI$$
$$\Delta I = bSI$$

as a model for the spread of a decease such as head lice where recovering from the infection does not confer immunity. In this model what happens is that S keeps deceasing until all of the population is infected.

We then looked a model where in each time step (which we have been taking to be a day) that some fixed proportion p of the infected population is moves back into the susceptible population. Then the model is

$$\Delta S = -bSI + pI$$

$$\Delta I = bSI - pI$$

Because it is a bit easier to analyze lets look at the continuous version of this

$$\frac{dS}{dt} = -bSI + pI$$
$$\frac{dS}{dt} = bSI - pI$$

where b and p are positive constants and 0 . As usual we start by looking for equilibrium points. That is solve

$$\frac{dS}{dt} = -bSI + pI = I(-bS + p) = 0$$
$$\frac{dS}{dt} = bSI - pI = -I(bS - p) = 0$$

This has the solutions

$$I = 0$$
 or $bS - p = 0$.

That is all of the points (S,0) (for any value of S) are equilibrium points as are all of the points (p/b, I) (for any value of I). We could start drawing in arrows to see how points move, but there is an easier way.

Let N = S + I be the total size of the population. This is constant. To double check this we take the derivative:

$$\frac{dN}{dt} = \frac{dS}{dt} + \frac{dI}{dt} = (-bSI + pI) + (bSI - pI) = 0.$$

Therefore the derivative of N is zero, which implies N is is constant. So we can solve for I in terms of S and get

$$I = N - S$$

Use this in the equation $\frac{dS}{dt} = I(-bS + p)$ to get

(3)
$$\frac{dS}{dt} = (N-S)(-bS+p).$$

This is now a rate equation with just one unknown function and we are experts on these. To make things a bit easier to understand on our first pass through let us look at a case with some numbers. Let

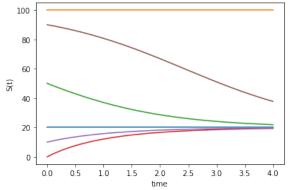
$$b = .01, \qquad p = .2 \qquad N = 100.$$

Then the equation (3) becomes

$$\frac{dS}{dt} = (100 - S)(-.01S + .2).$$

Problem 1. For the last equation show that the equilibrium points are S=100 and S=20. Draw the graphs for the equilibrium solutions and also the solutions with S(0)=10, S(0)=50, and S(0)=0. Use to to show that the point 20 is stable and that the point 100 is unstable. Finally deduce that if 0 < S(0s) < 100 that $S(t) \approx 20$ for all large t. This in the long run 20% of the population is not infected at any one time.

Partial solution. Here is what the time series looks like for the solutions:



which shows that the solutions stabilize at S = 20.

Now let us try this with an different set of numbers:

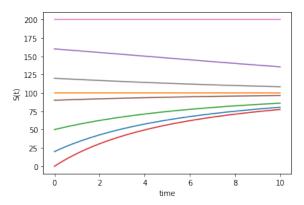
$$b = .001, \qquad p = .2, \qquad N = 100.$$

That is we have changed b to .001 and left the other numbers the same. This time the equation (3) becomes

$$\frac{dS}{dt} = (100 - S)(-.001S + .2).$$

Problem 2. For this new equation show that the two equilibrium points are S = 100 and S = 200. Draw graphs (the time series) showing that 100 is stable and 200 is unstable. Therefore this time if $0 < S(0) \le 100$, then $S(t) \approx 100$ for large t. That is in this case the infection dies off.

Partial solution. Here is what the time series looks like for the solutions:



which shows this time the solutions stabilize at S = 100.

We can now tackle the general case.

Proposition 1. For the rate equation

$$\frac{dS}{dt} = (N - S)(-bS + p)$$

with N, b, and p positive constants the equilibrium points are N and $\frac{p}{b}$. The long term behavior splits into two cases:

- (a) If $\frac{p}{b} < N$, then $\frac{p}{b}$ is stable and N is unstable. Thus if 0 < S(0) < N the long term behavior is that $S(t) \approx \frac{p}{b}$. That is in the long run the number of non-infected individuals in the population stabilizes at $\frac{p}{b}$.
- (b) If $N < \frac{p}{b}$, then N is stable and $\frac{p}{b}$ is unstable. Thus if $0 < S(0) \le N$, then the long term behavior is that $S(t) \approx N$ for large t. That is in the long run the infection dies off.

Problem 3. Draw pictures which explain why this is true. \Box

Now let us return to the original case of the equations (1) and (2) and as in the continuous case let N = S + I. This will be constant. We again solve for I in terms of S to get I = N - S. Using this in equation (1) gives

$$\Delta S = (N - S)(-bS + p)$$

which is short hand for

$$S_{t+1} - S_t = (N - S_t)(-bS_t + p)$$

that is

$$S_{t+1} = S_t + (N - S_t)(-bS_t + p) = f(S_t)$$

where

$$f(S) = S + (N - S)(-bS + p).$$

To find the equilibrium points we solve

$$f(S) = S$$

which, using the definition of f(S) and canceling S from both sides, reduces to

$$0 = (N - S)(-bS + p).$$

So in the discrete case we still have that

$$S = N, \qquad S = \frac{p}{h}$$

are the equilibrium points.

As a bit of review, recall that when for a system $S_{t+1} = f(S_t)$, if $S = S_*$ is an equilibrium point, then S_* is stable if $|f'(S_*)| < 1$ (that is $-1 < f'(S_*) < 1$) and it is unstable if $|f'(S_*)| > 1$ (that is $f'(S_*) < -1$ or $f'(S_*) > 1$). So we wish to compute the derivative of f(S) = S + (N - S)(-bS + p).

Problem 4. Use the product rule to show

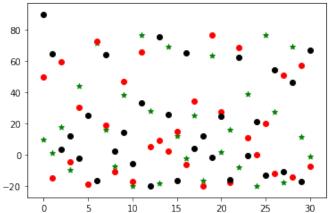
$$f'(S) = 1 - (-bS + p) - b(N - S)$$

and therefore

$$f'(N) = 1 + (bN - p)$$

$$f'\left(\frac{p}{b}\right) = 1 - (bN - p)$$

Case 1: |bN - p| > 1. This is the crazy case where neither of the equilibrium points are stable. Thus solutions are going to jump around almost at random.¹ As an example here is a plot with N = 100, b = .03, and p = .2, so that bN - p = 2.8 > 1 using the three initial conditions $S_0 = 10$ (green), $S_0 = 50$ (red), and $S_0 = 90$ (black) for 30 time steps.

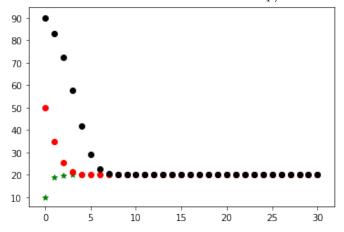


As you can see there is no obvious pattern, and the model also predicts negative vales of S, which makes no sense biologically.

Case 2: bN - p > 0 and bN - p < 2. Then f'(N) = 1 + (bN - p) > 0, so the equilibrium point N is unstable, and f'(p/b) = 1 - (bN - p) has |f'(p/b)| < 1 so p/b is stable. Therefore in this case the long term behavior is that the solutions stabilize at S = p/b. Here is the time series for the case N = 100, b = .01 and p = .2 where bN - p = .8 with the same initial

¹This is not quite true, there will be some vales of N, b, and p where there are stable period orbits but discussing this would take us too far afield.

conditions $S_0 = 10$ (green), $S_0 = 50$ (red), and $S_0 = 90$ (black) for 30 time steps where it is clear that the solutions stabilize at p/b = 20.



Case 3: bN - p < 0 and -2 < bN - p. Then f'(N) = 1 - (bN - p) has -1 < f'(N) < 1 so N is stable. And f'(p/b) = 1 - (bN - p) > 1 so p/b is unstable. This time the long term behavior is that solution stabilize at S = N, that is the infection dies off. Here is the time series for N = 100, b = .001, and p = .2 in which case bN - p = -.1 with the same initial conditions and color scheme as before.

