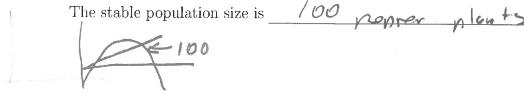
\sim		-1 4
W	$\mathbf{u}_{\mathbf{l}}$	14

Name:	Key

You must show your work to get full credit.

Jalapeno peppers are an annual plant. A population of jalapeno plants are growing wild in a village commons with a per capita growth rate of r = 1.2 (plants/year)/plant and a carrying capacity of K = 120. Let N_t be the number of pepper plants number of pepper plants in year t.

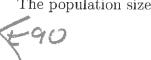

1. What is the equation satisfied by N_t ?

The equation is

Nott	ANDERS	NA	+	1.	2	N _j	(-	NA 12	0	1
										-	т

- 2. The villagers decide to harvest 20 of the pepper plants a year.
 - (a) What is the new equation satisfied by N_t ?

The equation is $N_{A+1} = N_A + 1.2N_A \left(1 - \frac{N_b}{120}\right) - 20$ (b) What is the new stable population size of the population of pepper plants? Hint: A reasonable choice for graphing is Xmin=0 and Xmax=150.



- 3. At some point the villagers stop harvesting 20 plants per year and start harverting 30% of the plants.
 - (a) What is the new equation satisfied by N_t ?

The equation is
$$N_{x+1} = N_x + 1.2N_x \left(1 - \frac{N_x}{120}\right) - .3N$$

(b) What is the new stable population size?

The population size is _90

(c) How many plants a year are the villagers harvesting?

They harvest: 27.