Quiz 8

Name: Wex

You must show your work to get full credit.

- 1. A population of annual plants is introduced to an island. Assume the initial number introduced is $N_0 = 12$ and that the population grows by 8% a year. Let N_t be the number of plants on the island t years after the introduction.
 - (a) Give a formula for N_{t+1} in terms of N_t .

$$N_{t+1} = (1.08) \mathcal{N}_{\star}$$

$$N_{++1} = N_{+} + 8\% \text{ of } N_{+}$$

= $N_{+} + .08 N_{+}$
= $(1.08) N_{+}$

(b) Give a formula for N_t .

$$N_{*} = N_{0}(1.08)^{*}$$

$$= 12(1.08)^{*}$$

 $N_t = 12(1.08)^{t}$

(c) What is the population size after 30 years?

$$N_{30} = 120.75$$

2. Let P_t be the population size of some annual cicadas in a park t years after the park is opened. Assume the initial population size is $P_0 = 1,500$ cicadas and that P_t satisfies

$$P_{t+1} = P_t + .05P_t \left(1 - \frac{P_t}{2,000} \right).$$

(a) What are P_1 and P_2 ?

$$P_1 = 1518.75$$

$$P_1 = P_0 + .05 P_0 \left(1 - \frac{P_0}{2000}\right)$$
= 1500 + .05(1500V) - 150

$$P_2 = 1537.02$$

$$= 1500 + .05(1500)(1 - \frac{1500}{2000})$$

$$= 1518.75$$

$$P_2 = P_1 + .05P_1 \left(1 - \frac{P_1}{2000}\right)$$