Mathematics 546 Homework.

We have seen that if a, n, x, y, b are integers and

$$ax + ny = b$$

then is we reduce modulo n and use that $ny \equiv 0 \pmod{n}$ we get that

$$ax \equiv b \pmod{n}$$
.

Conversely if

$$ax \equiv b \pmod{n}$$

then $n \mid (ax - b)$ which means there is an integer k with ax - b = kn. This can be rewritten as

$$ax + (-k)n = b$$

and this if we set y = -k this is

$$ax + by = b$$
.

Therefore solving

$$ax \equiv b \pmod{n}$$

for x is the same as solving

$$ax + ny = b$$

for x and y and then just using the x value.

We are experts as using the Euclidean algorithm to finding a solution to

$$ax + ny = \gcd(a, n).$$

In particular when gcd(a, n) = 1 we can find x and y with

$$ax + ny = 1$$
.

Reducing modulo n lets us find a solution to $ax \equiv 1 \pmod{n}$.

Definition 1. It $n \geq 1$ and a are integers with gcd(a, n) = 1 then any solution to

$$ax \equiv 1 \pmod{n}$$

is an *inverse of a modulo* n. We will denote such an inverse by \widehat{a} . \square

To be explicit \hat{a} is an integer such that

$$\widehat{a}a \equiv 1 \pmod{n}$$
.

Theorem 2. Let a, b, n be integers with $n \ge 1$ and gcd(a, n) = 1. Then the congruence

$$ax \equiv b \pmod{n}$$

has a solution. It is given by

$$x \equiv \widehat{a}b$$
.

Proof. We just check directly that $x \equiv \hat{a}b \pmod{n}$ works:

$$ax \equiv a(\widehat{a}b) \pmod{n}$$

 $\equiv (a\widehat{a})b \pmod{n}$
 $\equiv 1b \pmod{n}$
 $\equiv b \pmod{n}$.

The solution given in Theorem 2 is unique modulo n as we now show. The proof is based on the following, which we have used several times before (but here we change the notation a bit to match what we are currently working on).

Theorem 3. Let a, x, n be integers with $n \ge 1$ and gcd(a, n) = 1. Then $n \mid ax \text{ implies } n \mid x$.

Here is the uniqueness result:

Theorem 4. If a, n, b are integers with $n \ge 1$ and gcd(a, n) = 1, and x_1 and x_2 satisfy

$$ax_1 \equiv b \pmod{n}$$

 $ax_2 \equiv b \pmod{n}$

then

$$x_1 \equiv x_2 \pmod{n}$$
.

Problem 1. Prove this. *Hint:* Note

$$ax_2 - ax_1 \equiv b - b \pmod{n}$$

0 (mod n).

Use this to show $n \mid a(x_2 - x_1) = ax$ where $x = x_2 - x_1$ and then use Theorem 3.

As an example let us solve

$$17x \equiv 42 \pmod{132}.$$

To start we saw in the Lesson

 $\verb|http://ralphhoward.github.io/Classes/Fall2020/546/Lesson_2/| that$

$$x \equiv 101 \pmod{132}$$
.

is a solution to

$$17x \equiv 1 \pmod{132}$$
.

therefore we have that

$$\widehat{17} \equiv 101 \pmod{132}$$

is the inverse of 17 modulo 132. Whence the solution to $17x \equiv 42 \pmod{132}$ is

$$x \equiv \widehat{17} \cdot 42 \equiv 101 \cdot 42 \equiv 4242 \pmod{132}.$$

To get a nicer looking answer use that if 132 is divided into 4242 the remainder is 18 and therefore

$$x \equiv 18 \pmod{132}$$

is a pleasanter looking solution. (And you can check that 17(18) = 306 = 2(132) + (42) which implies $17 \cdot 18 \equiv 42 \pmod{132}$.)

Problem 2. Solve the following

- (a) $14x \equiv 8 \pmod{51}$
- (b) $3x \equiv 59 \pmod{538}$

Now that we know how to solve $ax \equiv b \pmod{n}$ when gcd(a, n) = 1, it is natural to ask what happens when gcd(a, n) > 1. We now work this out (you should compare this with pages 30–33 in the text). As we saw above

$$ax \equiv b \pmod{n}$$

has a solution for x if and only if

$$ax + ny = b$$

has a solution (x, y) with x and y integers.

Proposition 5. If

$$ax \equiv b \pmod{n}$$

has a solution, then

$$gcd(a, n) \mid b$$
.

(That is if the congruence has a solution, then gcd(a, b) divides b.)

Problem 3. Prove this. *Hint*: If the congruence has a solution, then there are integers x and y with

$$ax + yn = b$$
.

Set $d = \gcd(a, n)$. Then d is a divisor of both of a and n therefore there are integers a_1 and a_1 such that $a = a_1 d$ and $a_1 = a_1 d$. Use this in ax + yn = b to show $d \mid b$.

Proposition 6. If a and b are integers, not both zero, and $d = \gcd(a, b)$. Then the integers

$$a_1 = \frac{a}{d}$$
 $b_1 = \frac{b}{d}$

are relatively prime. (That is $gcd(a_1, b_1) = 1$.)

Problem 4. Prove this. *Hint:* By the GCD is a Linear Combination Theorem we have that there are integers x and y with

$$ax + by = d$$
.

And we also have $a = a_1d$ and $b = b_1d$. Put these facts together to get that

$$a_1x + b_1y = 1$$

which implies $gcd(a_1, b_1) = 1$.

Proposition 7. If a, n, b are integers with $n \ge 1$ and so that $gcd(a, n) \mid b$, then

$$ax \equiv b \pmod{n}$$

has solutions. These are found by solving

$$a_1 x \equiv b_1 \pmod{n_1}$$

where

$$a_1 = \frac{a}{\gcd(a,n)}, \qquad b_1 = \frac{b}{\gcd(a,n)}, \quad n_1 = \frac{n}{\gcd(a,n)}.$$

Problem 5. Prove this. *Hint*: First a bit of notation. Let $d = \gcd(a, n)$. Then form the definitions of a_1 , b_1 , and n_1 we have

$$a = a_1 d, \quad b = b_1 d, \quad n = n_1 d.$$

We know that $ax \equiv b \pmod{n}$ has solution if and only if there are integers x and y with

$$ax + ny = b$$
.

But this can be rewritten as

$$a_1 dx + n_1 dy = b_1 d.$$

Dividing out the d gives that this is equivalent to solving

$$a_1x + n_1y = b_1$$

which in turn has a solution if and only if

$$a_1 x \equiv b_1 \pmod{n_1}$$
.

Now use Proposition 6 to see that $gcd(a_1, n_1) = 1$ and explain why this implies $a_1x \equiv b_1 \pmod{n_1}$ has solutions.

Problem 6. In the following congruences either solve them or explain why they have no solutions.

- (a) $15x \equiv 33 \pmod{65}$.
- (b) $15x \equiv 32 \pmod{65}$.
- (c) $38x \equiv 52 \pmod{101}$.

Given a positive integer n and $a \in \mathbb{Z}$ we have defined the **congruence class** of a modulo n as

$$[a]_n = \{x : x \equiv a \pmod{n}\}$$

and shown

$$[a]_n = [b]_n \iff a \equiv b \pmod{n}.$$

For each n there are exactly n congruence classes modulo n and they are

$$[0]_n, [1]_n, \cdots, [n-1]_n.$$

This is because two numbers are congruence modulo n if and only if they have the same remainder when divided by n and the possible remainders

when dividing by n are $0, 1, 2, \ldots, (n-1)$. Let \mathbb{Z}_n be the set of all congruence classes modulo n. That is

$$\begin{split} \mathbb{Z}_2 &= \{[0]_2, [1]_2\} \\ \mathbb{Z}_3 &= \{[0]_3, [1]_3, [2]_3\} \\ \mathbb{Z}_4 &= \{[0]_4, [1]_4, [2]_4, [3]_4\} \\ \mathbb{Z}_5 &= \{[0]_5, [1]_5, [2]_5, [3]_5, [4]_5\} \\ \mathbb{Z}_6 &= \{[0]_6, [1]_6, [2]_6, [3]_6, [5]_6, [4]_6\} \end{split}$$

and in general

$$\mathbb{Z}_n = \{[0]_n, [1]_n, [2]_n, \cdots, [n-1]_n\}$$

We have defined addition and multiplication of the congruence classes by

$$[a]_n + [b]_n = [a+b]_n,$$
 $[a]_n[b]_n = [ab]_n.$

At the end of the document there is a list of the addition and multiplication for \mathbb{Z}_n for $2 \leq n \leq 12$.

Recall that $[a]_n \in \mathbb{Z}_n$ is a **unit** (or is **invertible**) if and only if there is $[b]_n \in \mathbb{Z}_n$ with $[a]_n[b]_n = 1$. In this case we call $[b]_n$ and write $[b]_n^{-1}$.

For example, using the table below, we have that the units in \mathbb{Z}_{12} are $[1]_{12}, [5]_{12}, [7]_{12}, [11]_{12}$ and

$$[1]_{12}^{-1} = [1]_{12}, \quad [5]_{12}^{-1} = [5]_{12}, \quad [7]_{12}^{-1} = [7]_{12}, \quad [11]_{12}^{-1} = [11]_{12}$$

Or in \mathbb{Z}_5 the units are $[1]_5$, $[2]_5$, $[3]_5$, $[4]_5$ and their inverses are

$$[1]_5^{-1} = [1]_5^{-1}, \quad [2]_5^{-1} = [3]_5, \quad [3]_5^{-1} = [2]_5, \quad [4]_5^{-1} = [4]_5.$$

Problem 7. What are the units in \mathbb{Z}_{12} ? What are their inverses?

Problem 8. What are the units in \mathbb{Z}_7 ? What are their inverses?

Proposition 8. The element $[a]_n \in \mathbb{Z}_n$ is a unit if and only if gcd(a, n) = 1.

Problem 9. Prove this.

Problem 10. Find the inverse of
$$[13]_{57}$$
 in \mathbb{Z}_{57} .

We have also defined the **Euler** ϕ **function** as

$$\phi(n)$$
 = the number of units in \mathbb{Z}_n .

Problem 11. Compute
$$\phi(n)$$
 for $2 \le n \le 12$.

Problem 12. Let p be a prime number.

(a) Let $[a]_p \in \mathbb{Z}_p$ with $[a]_p \neq [0]_p$. Show that $[a]_p$ is a unit. Hint: As $[a]_p \neq [0]_p$ we have that p is not a factor of a. Use this and that p is prime to show $\gcd(a,p)=1$ and therefore that $ax \equiv 1 \pmod{n}$ has a solution.

(b) Show
$$\phi(p) = p - 1$$
.

Appendix: Addition and multiplication tables for \mathbb{Z}_n

Here are the addition and multiplication for small values of n. In writing these I use the simplified notation [a] rather than $[a]_n$.

\mathbb{Z}_2 :	$\begin{array}{c cc} + & [0] & [1] \\ \hline [0] & [0] & [1] \\ \hline [1] & [1] & [0] \\ \end{array}$	$ \begin{array}{c ccc} \times & [0] & [1] \\ \hline [0] & [0] & [0] \\ \hline [1] & [0] & [1] \\ \end{array} $
\mathbb{Z}_3 :	$ \begin{array}{ c c c c c } \hline + & [0] & [1] & [2] \\ \hline [0] & [0] & [1] & [2] \\ \hline [1] & [1] & [2] & [0] \\ \hline [2] & [2] & [0] & [1] \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
\mathbb{Z}_4 :	+ [0] [1] [2] [3] [0] [0] [1] [2] [3] [1] [1] [2] [3] [0] [2] [2] [3] [0] [1] [3] [3] [0] [1] [2]	× [0] [1] [2] [3] [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [2] [0] [2] [0] [2] [3] [0] [3] [2] [1]
\mathbb{Z}_5 :	+ [0] [1] [2] [3] [4] [0] [0] [1] [2] [3] [4] [1] [1] [2] [3] [4] [0] [2] [2] [3] [4] [0] [1] [3] [3] [4] [0] [1] [2] [4] [4] [0] [1] [2] [3]	× [0] [1] [2] [3] [4] [0] [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [4] [2] [0] [2] [4] [1] [3] [3] [0] [3] [1] [4] [2] [4] [0] [4] [3] [2] [1]
\mathbb{Z}_6 :	+ [0] [1] [2] [3] [4] [5] [0] [0] [1] [2] [3] [4] [5] [1] [1] [2] [3] [4] [5] [0] [2] [2] [3] [4] [5] [0] [1] [3] [3] [4] [5] [0] [1] [2] [4] [4] [5] [0] [1] [2] [3] [5] [5] [0] [1] [2] [3] [4]	× [0] [1] [2] [3] [4] [5] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [1] [2] [3] [4] [5] [4] [6] [7] [8] [9] [3] [4] [2] [9] [4] [2] [9] [4] [2] [9] [4] [2] [9] [4] [2] [9] [4] [2] [9] [4] [2] [9] [4] [2] [9] [4] [2] [9]

_		
' //		
//	•	7

⊿7	•							
	+	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	[1]	[1]	[2]	[3]	[4]	[5]	[6]	[0]
	[2]	[2]	[3]	[4]	[5]	[6]	[0]	[1]
	[3]	[3]	[4]	[5]	[6]	[0]	[1]	[2]
	[4]	[4]	[5]	[6]	[0]	[1]	[2]	[3]
	[5]	[5]	[6]	[0]	[1]	[2]	[3]	[4]
	[6]	[6]	[0]	[1]	[2]	[3]	[4]	[5]
		F - 3	F - 3	F - 3	5 - 3	F - 3	F 7	F - 3
	X	[0]	$\lfloor 1 \rfloor$	[2]	[3]	[4]	[5]	[6]

×	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[0]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[0]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[0]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[0]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[0]	[6]	[5]	[4]	[3]	[2]	[1]

 \mathbb{Z}_8 :

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[1]	[2]	[3]	[4] [0]	[5] [0]	[6] [0]	[7] [0]
	1 1							
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[0] [1]	[0]	[0]	[0] [2]	[0]	[0] [4]	[0] [5]	[0] [6]	[0] [7]
[0] [1] [2]	[0] [0] [0]	[0] [1] [2]	[0] [2] [4]	[0] [3] [6]	[0] [4] [0]	[0] [5] [2]	[0] [6] [4]	[0] [7] [6]
[0] [1] [2] [3]	[0] [0] [0] [0]	[0] [1] [2] [3]	[0] [2] [4] [6]	[0] [3] [6] [1]	[0] [4] [0] [4]	[0] [5] [2] [7]	[0] [6] [4] [2]	[0] [7] [6] [5]
[0] [1] [2] [3] [4]	[0] [0] [0] [0] [0]	[0] [1] [2] [3] [4]	[0] [2] [4] [6] [0]	[0] [3] [6] [1] [4]	[0] [4] [0] [4] [0]	[0] [5] [2] [7] [4]	[0] [6] [4] [2] [0]	[0] [7] [6] [5] [4]

P77	
// ^	٠
ωu	

9:										
-	+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
1	8]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
L	OJ	وا	[0]	[+]	[2]	[ပ]		[0]	[0]	[']
	×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	× 0]	[0]	[1]	[2]	[3]	[4] [0]	[5] [0]	[6] [0]	[7] [0]	[8] [0]
	× 0] 1]	[0] [0] [0]	[1] [0] [1]	[2] [0] [2]	[3] [0] [3]	[4] [0] [4]	[5] [0] [5]	[6] [0] [6]	[7] [0] [7]	[8] [0] [8]
	× 0] 1] 2]	[0] [0] [0]	[1] [0] [1] [2]	[2] [0] [2] [4]	[3] [0] [3] [6]	[4] [0] [4] [8]	[5] [0] [5] [1]	[6] [0] [6] [3]	[7] [0] [7] [5]	[8] [0] [8] [7]
	× 0] 1] 2]	[0] [0] [0] [0]	[1] [0] [1] [2] [3]	[2] [0] [2] [4] [6]	[3] [0] [3] [6] [0]	[4] [0] [4] [8] [3]	[5] [0] [5] [1] [6]	[6] [0] [6] [3] [0]	[7] [0] [7] [5] [3]	[8] [0] [8] [7] [6]
	× 0] 1] 2] 3] 4]	[0] [0] [0] [0] [0]	[1] [0] [1] [2] [3] [4]	[2] [0] [2] [4] [6] [8]	[3] [0] [3] [6] [0] [3]	[4] [0] [4] [8] [3] [7]	[5] [0] [5] [1] [6] [2]	[6] [0] [6] [3] [0] [6]	[7] [0] [7] [5] [3] [1]	[8] [0] [8] [7] [6] [5]
	× 0] 1] 2] 3] 4]	[0] [0] [0] [0] [0] [0]	[1] [0] [1] [2] [3] [4] [5]	[2] [0] [2] [4] [6] [8] [1]	[3] [0] [3] [6] [0] [3] [6]	[4] [0] [4] [8] [3] [7] [2]	[5] [0] [5] [1] [6] [2] [7]	[6] [0] [6] [3] [0] [6] [3]	[7] [0] [7] [5] [3] [1] [8]	[8] [0] [8] [7] [6] [5] [4]

P77		
// 4	_	٠

	ງ:										
	+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
Ì	[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
	[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[0]
	[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[0]	[1]
	[3]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[0]	[1]	[2]
	[4]	[4]	[5]	[6]	[7]	[8]	[9]	[0]	[1]	[2]	[3]
	[5]	[5]	[6]	[7]	[8]	[9]	[0]	[1]	[2]	[3]	[4]
	[6]	[6]	[7]	[8]	[9]	[0]	[1]	[2]	[3]	[4]	[5]
	[7]	[7]	[8]	[9]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	[8]	[8]	[9]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
	[9]	[9]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
ſ											
	×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
	× [0]	[0]	[1] [0]	[2]	[3]	[4] [0]	[5] [0]	[6] [0]	[7] [0]	[8] [0]	[9] [0]
	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
	[0] [1]	[0] [0]	[0] [1]	[0] [2]	[0] [3]	[0] [4]	[0] [5]	[0] [6]	[0] [7]	[0] [8]	[0] [9]
	[0] [1] [2]	[0] [0] [0]	[0] [1] [2]	[0] [2] [4]	[0] [3] [6]	[0] [4] [8]	[0] [5] [0]	[0] [6] [2]	[0] [7] [4]	[0] [8] [6]	[0] [9] [8]
	[0] [1] [2] [3]	[0] [0] [0] [0]	[0] [1] [2] [3]	[0] [2] [4] [6]	[0] [3] [6] [9]	[0] [4] [8] [2]	[0] [5] [0] [5]	[0] [6] [2] [8]	[0] [7] [4] [1]	[0] [8] [6] [4]	[0] [9] [8] [7]
	[0] [1] [2] [3] [4]	[0] [0] [0] [0] [0]	[0] [1] [2] [3] [4]	[0] [2] [4] [6] [8]	[0] [3] [6] [9] [2]	[0] [4] [8] [2] [6]	[0] [5] [0] [5] [0]	[0] [6] [2] [8] [4]	[0] [7] [4] [1] [8]	[0] [8] [6] [4] [2]	[0] [9] [8] [7] [6]
	[0] [1] [2] [3] [4] [5]	[0] [0] [0] [0] [0]	[0] [1] [2] [3] [4] [5]	[0] [2] [4] [6] [8] [0]	[0] [3] [6] [9] [2] [5]	[0] [4] [8] [2] [6] [0]	[0] [5] [0] [5] [0] [5]	[0] [6] [2] [8] [4] [0]	[0] [7] [4] [1] [8] [5]	[0] [8] [6] [4] [2] [0]	[0] [9] [8] [7] [6] [5]
	[0] [1] [2] [3] [4] [5] [6]	[0] [0] [0] [0] [0] [0]	[0] [1] [2] [3] [4] [5] [6]	[0] [2] [4] [6] [8] [0] [2]	[0] [3] [6] [9] [2] [5] [8]	[0] [4] [8] [2] [6] [0] [4]	[0] [5] [0] [5] [0] [5] [0]	[0] [6] [2] [8] [4] [0] [6]	[0] [7] [4] [1] [8] [5] [2]	[0] [8] [6] [4] [2] [0] [8]	[0] [9] [8] [7] [6] [5] [4]

777		
<i>I</i> 241	1	:

Ί.	1.											
	+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
	[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
	[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[0]
	[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[0]	[1]
	[3]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[0]	[1]	[2]
	[4]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[0]	[1]	[2]	[3]
	[5]	[5]	[6]	[7]	[8]	[9]	[10]	[0]	[1]	[2]	[3]	[4]
	[6]	[6]	[7]	[8]	[9]	[10]	[0]	[1]	[2]	[3]	[4]	[5]
	[7]	[7]	[8]	[9]	[10]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	[8]	[8]	[9]	[10]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
	[9]	[9]	[10]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	[10]	[10]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
	×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[10]

×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
[2]	[0]	[2]	[4]	[6]	[8]	[10]	[1]	[3]	[5]	[7]	[9]
[3]	[0]	[3]	[6]	[9]	[1]	[4]	[7]	[10]	[2]	[5]	[8]
[4]	[0]	[4]	[8]	[1]	[5]	[9]	[2]	[6]	[10]	[3]	[7]
[5]	[0]	[5]	[10]	[4]	[9]	[3]	[8]	[2]	[7]	[1]	[6]
[6]	[0]	[6]	[1]	[7]	[2]	[8]	[3]	[9]	[4]	[10]	[5]
[7]	[0]	[7]	[3]	[10]	[6]	[2]	[9]	[5]	[1]	[8]	[4]
[8]	[0]	[8]	[5]	[2]	[10]	[7]	[4]	[1]	[9]	[6]	[3]
[9]	[0]	[9]	[7]	[5]	[3]	[1]	[10]	[8]	[6]	[4]	[2]
[10]	[0]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

777		
//	0	۰
ω	٠,	

12.												
+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[8]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[9]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[10]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
[11]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]

×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[2]	[0]	[2]	[4]	[6]	[8]	[10]	[0]	[2]	[4]	[6]	[8]	[10]
[3]	[0]	[3]	[6]	[9]	[0]	[3]	[6]	[9]	[0]	[3]	[6]	[9]
[4]	[0]	[4]	[8]	[0]	[4]	[8]	[0]	[4]	[8]	[0]	[4]	[8]
[5]	[0]	[5]	[10]	[3]	[8]	[1]	[6]	[11]	[4]	[9]	[2]	[7]
[6]	[0]	[6]	[0]	[6]	[0]	[6]	[0]	[6]	[0]	[6]	[0]	[6]
[7]	[0]	[7]	[2]	[9]	[4]	[11]	[6]	[1]	[8]	[3]	[10]	[5]
[8]	[0]	[8]	[4]	[0]	[8]	[4]	[0]	[8]	[4]	[0]	[8]	[4]
[9]	[0]	[9]	[6]	[3]	[0]	[9]	[6]	[3]	[0]	[9]	[6]	[3]
[10]	[0]	[10]	[8]	[6]	[4]	[2]	[0]	[10]	[8]	[6]	[4]	[2]
[11]	[0]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]