${\bf Mathematics~546~Homework,~October~14,~2020}$

Problem 1. Let H and K be subgroups of the group G . Show the intersection, $H \cap K$, is also a subgroup.
Problem 2. Give an example of two subgroups H and K of the dihedral group D_4 such that the union, $H \cap K$, is not a subgroup.
We have defined the alternating group , A_n , to be the subgroup of S_n consisting of all even permutations.
Problem 3. List the elements of A_3 .
Problem 4. If we number the vertices of a square counterclockwise as 1, 2, 3, and 4. Then the rotation by 90° counterclockwise is represented by the 4-cycle $(1,2,3,4)$. Let b be the reflection in the line through 1 and 3. Then $b = (2,4)$ then (you do not have to check this) $a^4 = b^2 = 1$ and $ba = a^{-1}b$, which is our usual representation of the dihedral group D_4 . List the permutations in $A_4 \cap D_4$.
Problem 5. Likewise we can represent D_5 as permutations in S_5 with
a = (1, 2, 3, 4, 5) and $b = (2, 5)(3, 4)$.
Again it can be checked that $a^5 = 1 = b^2$ and $ba = a - 1b$ (and again you do not have to check this). List the permutations in $A_5 \cap D_5$. (There is a way to do this with almost no calculation.)