Mathematics 554H

Show your work to get credit.

Name:

- **1.** (10 points) Let $S \subseteq \mathbb{R}$ be a nonempty subset of the real numbers, \mathbb{R} . (a) Define what it means for $b \in \mathbb{R}$ to be an **upper bound** for S.
 - (b) Define what it means for β to be a *least upper bound* for S (denoted $\beta = \sup(S)$).
 - (c) State the **Least Upper Bound Axiom**.
- (d) Use the Least Upper Bound Axiom to show the set $S = \{1.02, (1.02)^2, (1.02)^3, (1.02)^4, \ldots\}$ has no upper bound in \mathbb{R} .

2. (5 points) Let $f: X \to Y$ be a map between metric spaces and let $x_0 \in X$ and $y_0 \in Y$. Give the ε - δ definition of

$$\lim_{x \to x_0} f(x) = y_0.$$

3. (10 points) Let $f: \mathbb{R} \to \mathbb{R}$ be the function

$$f(x) = x^3.$$

Give an ε - δ proof that

$$\lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h} = 12.$$

4. (10 points) If $x,y\in\mathbb{R}$ with $|x-2|<\delta$ and $|y-3|<\delta$ where $0<\delta<1$ show $|xy-6|<6\delta.$

5.	(10 points) Let E be a metric space and $S \subseteq E$ a nonempty subset of E . (a) Define what it means for S to be an open set .
	(b) Show that if U_1 , U_2 , and U_3 are open subsets of a metric space, then $U_1 \cap U_2 \cap U_3$ is also open.
op	(c) Give an example of open subsets U_1, U_2, U_3, \ldots of \mathbb{R} such that the intersection $\bigcap_{n=1}^{\infty} U_n$ is not ben.

6.	(10 points) (a) Define what it means for S to be a closed set .
	(b) Define what it means for p to be an $adherent$ point of S .
	(c) Show that if S is closed and p is an adherent point of S, then $p \in S$

7. (10 points) Let E be a metric space.(a) Define what it means for E to be complete.	

(b) Show that if E is a complete metric space and F is a closed subset of E, then F is also complete.

- **8.** (10 points) (a) Define E is **connected**.
 - (b) Explain why the empty set \varnothing is connected.
- (c) Prove that if $E=A\cup B$ with each of A and B nonempty, connected and with $A\cap B\neq\varnothing$, then E is connected.

9. (10 points) (a) Define K is a compact subset of the metric space E .
(b) Show that if K_1 and K_2 are compact subsets of the metric space S that the metric space E that the union $K_1 \cup K_2$ is compact.
(c) Given an example of compact subsets K_1, K_2, K_3, \ldots of \mathbb{R} such that the union $\bigcup_{k=1}^{\infty} K_k$ is not compact.
(d) Show that any compact subset of a metric space can be covered with a finite number of balls of radius .001.

10. (10 points) (a) State the *Intermediate Value Theorem* for a continuous function $f:[a,b] \to \mathbb{R}$.

(b) Use that the continuous image of a connected set is connected and that the connected subsets of \mathbb{R} are just the intervals to prove the form of the Intermediate Value Theorem just given.

(c) Use the Intermediate Value Theorem to prove the equation $\sqrt{x} = \frac{x^2}{1+x}$ has a positive solution. (You may assume the square root function is continuous.)

11. (5 free points) Have a good holiday break.