Mathematics 554 Homework.

We have defined open and closed subsets of a metric space and have a result that gives several different conditions for a set to be closed.

Theorem 1. Let E be a metric space and $S \subseteq E$. Then the following are equivalent:

(a) S is a closed subset of E. (b) S contains all its adherent points. (c) S contains the limits of all its convergent sequences, that is if $\langle p_n \rangle_{n=1}^{\infty}$ is sequence from S which converges to some point p of E, then $p \in S$. \square We want to give conditions on a sequence that implies it converges. Maybe our most basic result here is **Theorem 2.** A bounded monotone sequence in \mathbb{R} converges. If we want convergent subsequence of a sequence in \mathbb{R} we have **Theorem 3.** Any bounded sequence in \mathbb{R} has a convergent subsequence. *Proof.* Let $\langle x_n \rangle_{n=1}^{\infty}$ be a bounded in \mathbb{R} . Then we have shown it has a monotone subsequence $\langle x_{n_k} \rangle_{k=1}^{\infty}$. This subsequence is bounded and monotone and therefore convergent. **Definition 4.** Let $\langle p_n \rangle_{n=1}^{\infty}$ be a sequence in a metric space E. Then $\langle p_n \rangle_{n=1}^{\infty}$ is a *Cauchy sequence* if and only if for all $\varepsilon > 0$ there is a N such that $m, n \geq N$ implies $d(p_m, p_n) < \varepsilon$. Being Cauchy is necessary for a sequence to converge:

Proposition 5. Every convergent sequence is a Cauchy sequence.

We have seen examples of Cauchy sequences that do not converge. One such example to let $E = (0, \infty)$ be the set of positive real numbers with the usual distance d(x,y) = |x-y|. Then the sequence $\langle x_n \rangle_{n=1}^{\infty}$ with $x_n = 1/n$ is a Cauchy sequence in E, but $\langle x_n \rangle_{n=1}^{\infty}$ does not converge in E. This example feels a bit like a cheat as the sequence does converge in a larger space (that is in \mathbb{R}) and the fact that this Cauchy sequence does not converge somehow means that E should have a point (that is 0) which was "left out". That is in some sense the space E is not "complete".

Definition 6. Let E be a metric space. Then E is **complete** if and only if every Cauchy sequence in E converges to a point of E.

Our most important recent result is that what is our (or at least my) favorite metric space is complete.

Theorem 7. The real numbers \mathbb{R} with the metric d(x,y) = |x-y| is a complete metric space.

We were then able to use this to show

Theorem 8. The metric space \mathbb{R}^n with its usual metric is complete.

Once we have a complete space we get almost for free that some of its subsets are also complete. Recall that if E is a metric space with distance function d(p,q) and $S \subseteq E$ is a nonempty subset of E then S is also a metric space by just restricting the distance function to S. That is for $p,q \in S$ the distance is still d(p,q).

Theorem 9. Let E be a complete metric space. Then a nonempty subset $S \subseteq E$ is complete if and only if S is a closed subset of E.

Problem 1. Prove this along the following lines.

- (a) First assume S is closed. We need to show that any Cauchy sequence $\langle p_n \rangle_{n=1}^{\infty}$ from S converges to a point of S. Use that E is complete to show there is a point $p \in E$ such that $\lim_{n \to \infty} p_n = p$. Now use Theorem 1 to show $p \in S$.
- (b) To prove the converse assume that S is complete. To show S is closed use Theorem 1: to show S is closed we just need to show that if $\langle p_n \rangle_{n=1}^{\infty}$ is a sequence of points from S which converges to a point, p, of E that $p \in S$. Since the sequence converges in E, it is a Cauchy sequence. Now explain why S being complete implies $p \in S$.

Definition 10. A metric space E is **sequentially compact** if and only if every sequence $\langle p_n \rangle_{n=1}^{\infty}$ has a subsequence which converges to a point of E.

One of our most recent results is

Theorem 11 (BolzanoWeierstrass theorem). Every closed bounded subset of \mathbb{R} is sequentially compact.

Problem 2. Prove this. *Hint*: Let F be a closed bounded subsequence of \mathbb{R} and $\langle x_n \rangle_{n=1}^{\infty}$ a sequence of points from F. Then use Theorem 3 to get a convergent (in \mathbb{R}) subsequence and then use Theorem 1 to show the limit of this subsequence is in fact in F.

This was generalize to higher dimensions.

Theorem 12 (General Bolzano-Weierstrass Theorem). Any closed bounded set of \mathbb{R}^n is sequentially compact.

This has a converse.

Theorem 13. Let S be a subset of \mathbb{R}^n that is sequentially compact. Then S is closed and bounded. (By **bounded** in this setting we mean there is a constant M such that $||p|| \leq M$ for all $p \in S$.)

Problem 3. Prove this. *Hint:*

(a) First show S is bounded. One way is to assume, towards a contradiction, that S is not bounded. Then for each positive integer m there is a point $p_m \in S$ with $||p_m|| \geq m$. Show that no subsequence of $\langle p_m \rangle_{m=1}^{\infty}$

- is Cauchy and therefore the sequence has no convergent subsequence. Explain why this is a contradiction.
- (b) Show that S is bounded. The same circle of ideas that used Problem 1 (b) should work here. \Box