Mathematics 554 Homework.

Since our test is on Monday, I will not collect this in the usual way, but you will have a quiz on it on Friday. So look at it before Wednesday and we can go over anything you do not understand.

Proposition 1. Let E be a metric space and U and V disjoint open subsets of E. Show that if S is a connected subset of E and $S \subseteq (U \cup V) \neq \emptyset$, then either $S \subseteq U$ or $S \subseteq V$.

Problem 1. Prove this. \Box

Proposition 2. Let E be a metric space and A a clopen subset of E. Then for an connected subset S of E either $S \subseteq A$ or $S \subseteq C(A)$.

Problem 2. Prove this. *Hint*: If A is clopen, then U = A and $V = \mathcal{C}(A)$ are open disjoint subsets of E.

Theorem 3. Let E be a metric space and $\{S_{\alpha} : \alpha \in I\}$ a collection of connected subsets of E. Assume there is a $\beta \in I$ such that

$$S_{\alpha} \cap S_{\beta} \neq \emptyset$$
 for all $\alpha \in I$.

Then the union

$$S = \bigcup_{\alpha \in I} S_{\alpha}$$

is connected.

Problem 3. Prove this. *Hint:* Here as an argument that is a little different than the one we did in class. By replacing E with S we can assume E = S. Assume that A is a clopen subset of E = S and we want to show that $A = \emptyset$ or S = E. Use Proposition 2 to show that for each α that $S_{\alpha} \subseteq A$ or $S_{\alpha} \subseteq C(A)$. First assume $S_{\beta} \subseteq A$ and $S_{\alpha} \subseteq A$ for all α and therefore $E = \bigcup_{\alpha \in I} S_{\alpha} \subseteq A$ and therefore A = E. Do a similar argument in the case $S_{\beta} \subseteq C(A)$.

Theorem 4. Let $f: X \to Y$ be a Lipschitz map between metric spaces and let $U \subseteq Y$ be an open subset of Y. Then

$$U = \{x \in X : f(x) \in V\}$$

is an open subset of X.

Problem 4. Prove this. *Hint:* Because f is Lipschitz there is a constant M > 0 such that for all $x_1, x_2 \in X$ the inequality

$$d_Y(f(x_1), f(x_2)) \le M d_X(x_1, x_2)$$

for all $x_1, x_2 \in X$.

(a) Let $x_0 \in U$, then by definition $f(x_0) \in V$. Explain why there is r > 0 such that $B_Y(f(x_0), r) \subseteq V$. (Do not make this hard, the answer should just be "This follows form the definition of V being an fill in blank set."

- (b) Use the Lipschitz condition to show if $x \in B_X(x_0, r/M)$, then $f(x) \in B_Y(f(x_0), r) \subseteq V$.
- (c) Explain why (b) implies U is open. (Again to not make this hard.)

Proposition 5. Let X be a metric space and $f: X \to \mathbb{R}$ a Lipschitz map. Then the image

$$f[X] = \{ f(x) : x \in [a, b] \}$$

 $is\ connected.$

Problem 5. Prove this. *Hint:* Toward a contradiction assume that f[X] is not connected and let $f[X] = A \cup B$ be a disconnection of X. Then use Theorem 4 to show

$$X = \{x \in X : x \in A\} \cup \{x \in X : x \in B\}$$

is a disconnection of X.

Definition 6. Let $f: X \to Y$ be a map between metric spaces. Then f is **continuous** at $x_0 \in X$ if and only if for every $\varepsilon > 0$, there is a $\delta > 0$ such that for $x \in X$

$$d_X(x, x_0) < \delta$$
 implies $d_Y(f(x), f(x_0)) < \varepsilon$.

Problem 6. Memorize this.