Mathematics 554 Homework.

Problem 1. Given an ε - δ proof that

$$\lim_{x \to 5} x^2 + x = 30.$$

The following is a somewhat expanded version of Theorem 4.13 of Notes on Analysis.

Theorem 1 (Continuous Functions are Great). Let $f: X \to Y$ be a map between metric spaces. Then the following are equivalent:

- (a) f is continuous
- (b) f does the right thing to limits: For all $x_0 \in X \lim_{x \to x_0} f(x) = f(x_0)$.
- (c) f does the right thing to limits of convergent sequences in X: If $\lim_{n\to\infty} x_n = x_0$, then $\lim_{n\to\infty} f(x_n) = f(x_0)$.
- (d) Preimages of open sets by f are open: If V is an open subset of Y, then $f^{-1}[V]$ is an open subset of X.
- (e) Preimages of closed sets by f are closed: If F is a closed subset of Y, then $f^{-1}[F]$ is a closed subset of X.
- **Problem** 2. Problem 4.20 on Page 83 of *Notes on Analysis*. \Box
- **Problem** 3. Problem 4.24 on Page 85 of *Notes on Analysis*. □
- **Problem** 4. Problem 4.32 on Page 88 of *Notes on Analysis*. □
- **Problem** 5. Problem 4.33 on Page 89 of *Notes on Analysis*. \Box
- **Problem** 6. Problem 4.34 on Page 89 of *Notes on Analysis*. □