Mathematics 554 Homework.

This homework is to correct some

Definition 1. Let $f: X \to Y$ be a function between metric space, $x_0 \in X$ and $y_0 \in Y$

$$\lim_{x \to x_0} f(x) = y_0$$

if and only if for all $\varepsilon > 0$ there is a $\delta > 0$ such that

$$0 < d_X(x, x_0) < \delta$$
 implies $d_Y(f(x), y_0) < \varepsilon$.

Proposition 2. Let X and Y be metric spaces, $f: X \to Y$ any function, $x_0 \in X$, and $y_0 \in Y$. Then

$$\lim_{x \to x_0} f(x) = y_0$$

Proof. Let $\varepsilon > 0$ and let

$$\delta = \frac{d_X(x, x_0)\varepsilon}{1 + d_Y(f(x), y_0)}$$

Then if $0 < d_X(x, x_0) < \delta$

$$d_{Y}(f(x), y_{0}) = \frac{d_{Y}(f(x), y_{0})}{d_{X}(x, x_{0})} d_{X}(x, x_{0})$$

$$\leq \frac{d_{Y}(f(x), y_{0})}{d_{X}(x, x_{0})} \delta$$

$$= \frac{d_{Y}(f(x), y_{0})}{d_{X}(x, x_{0})} \left(\frac{d_{X}(x, x_{0})\varepsilon}{1 + d_{Y}(f(x), y_{0})} \right)$$

$$= \frac{d_{Y}(f(x), y_{0})\varepsilon}{1 + d_{Y}(f(x), y_{0})}$$

This shows if $0 < d_X(x, x_0) < \delta$, then $d_Y(f(x), y_0) < \varepsilon$ which verifies the definition of $\lim_{x\to x_0} f(x) = y_0$.

If we let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^2 + x$ then by varying y_0 we get all of the following limits:

$$\lim_{x \to 5} (x^2 + x) = 30$$
$$\lim_{x \to 5} (x^2 + x) = 17$$
$$\lim_{x \to 5} (x^2 + x) = 42$$

which would contradict uniqueness of limits. So Proposition 2 must be false.

Problem. Find the mistake in the proof of Proposition 2. *Hint:* This has a one or two sentence answer and does not involve any bad algebra or trickiness in the calculation. \Box