Mathematics 554H/703I Test 1

Name:

You are to use your own calculator, no sharing. Show your work to get credit.

- **1.** (5 points) What is the sum of the series $S = \sum_{k=0}^{49} x^2 (1-x)^k$? S =_______
- 2. (10 points) (a) Define the binomial coefficient $\binom{n}{k}$ =
 - (b) State the **binomial theorem**.
 - (c) Simplify $\frac{(a+h)^3-(a-h)^3}{h}$ (the answer should have no h in the denominator).

$$\frac{(a+h)^3 - (a-h)^3}{h} = \underline{\hspace{1cm}}$$

3. (5 points) Give an example of a subset of \mathbb{R} which is bounded below, but which does not have a minimum (no proof needed).

- **4.** (10 points)
- (a) Define what if means for a function $f:[a,b]\to\mathbb{R}$ to be $\textbf{\textit{Lipschitz}}.$
- (b) Show the function $f(x) = \frac{2x}{x+3}$ is Lipschitz on the interval [0,4].

5. (10 points) Show that

$$x^2 + 2xy + 2y^2 \ge 0$$

with equality if and only if z = y = 0.

6. (20 points) (a) Let $S \subseteq \mathbb{R}$ be a nonempty subset of \mathbb{R} . Define what it means for S to be bounded above.
(b) Define what it means for b to be a $\boldsymbol{least\ upper\ bound}$ of S .
(c) State the <i>least upper bound axiom</i> .
(d) State Archimedes' axiom .
(e) Let $A \subseteq \mathbb{R}$ be a nonempty set oof positive numbers with the property that if $a \in A$, then also $(1.01)a \in A$. Use the least upper bound axiom to show that A has no upper bound in \mathbb{R} .

7. (10 points) Show that if $|x| \ge \max\{1,2(|a)+|b|)\}$ that $1+\frac{a}{x}+\frac{b}{x^2}\ge \frac{1}{2}.$

$$1 + \frac{a}{x} + \frac{b}{x^2} \ge \frac{1}{2}.$$