Math	nema	tics	55	4H	Test	2
Show	your	work	to	get	credit	

Name:	

- 1. (15 points) Let E be a metric space with distance function d(p,q).
- (a) Let S be a subset of E. Define what it means for p to be an **adherent point** of S.
- (b) Prove that if p is an adherent point of S that there is a sequence of points $\langle p_n \rangle_{n=1}^{\infty} \subseteq S$ with $\lim_{n \to \infty} p_n = p$.

2. (10 points) points) Let $\langle x_n \rangle_{n=1}^{\infty}$ be a sequence of real numbers with $\lim_{n\to\infty} = L$. Give a ε , N proof that

 $\lim_{n \to \infty} x_n^2 = L^2.$

3. (15 points) Define a sequence by

$$x_0 = 100$$

 $x_{n+1} = \frac{3x_n}{5} + 17$ for $n \ge 1$.

(a) Show the sequence $\langle x_n \rangle_{n=0}$ is both bounded below and decreasing.

(b) Explain why $\lim_{n\to\infty} x_n$ exists.

(c) Find $\lim_{n\to\infty} x_n$.

4. (10 points points) We have shown that if $f: E \to \mathbb{R}$ is a Lipschitz function and $\lim_{n\to\infty} p_n = p$ in E, then $\lim_{n\to\infty} f(p_n) = f(p)$. Use this to show the set $\{p: a \le f(x) \le b\}$ is closed in E.

5. (10 points) Let $\langle x_n \rangle_{n=1}^{\infty}$, $\langle y_n \rangle_{n=1}^{\infty}$ and $\langle z_n \rangle_{n=1}^{\infty}$ be three sequences of real numbers such that $x_n \leq y_n \leq z_n$

for all n and

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = L$$

for some L. Give a ε , N proof that

$$\lim_{n\to\infty}y_n=L.$$

- **6.** (10 points) Let S be a subset of \mathbb{R}^2 .
- (a) Define what is means for S to be sequentially compact.

(b) Use that closed bounded subsets of \mathbb{R}^2 are sequentially compact to show that if A and B are closed bounded subsets of \mathbb{R}^2 there are points $a_0 \in A$ and $b_n \in B$ such that

$$||a - b|| \ge ||a_0 - b_0||$$

for all $a \in A$ and all $b \in B$.