Mathematics 172 Homework, August 28, 2023.

Recall that the circle of radius r has

Length =
$$2\pi r$$
. Area = πr^2

1. What happens if to the length and area of a circle if the radius is doubled?

Solution: Let C_1 be a circle of radius r and C_2 a circle of radius 2r. Let L_1 and A_1 be the length and are of C_1 and L_2 and A_2 the length of C_2 . Then

$$L_2 = 2\pi(2r)$$

$$= 2(2\pi r)$$

$$= 2L_1.$$

$$A_2 = \pi(2r)^2$$

$$= 4(\pi r^2)$$

$$= 4A_1$$

Thus doubling the radius doubles the length, but doubling the radius multiples the area by a factor of 4.

2. What happens if to the length and area of a circle if the radius is tripled?

Solution: A calculation which looks almost identical to the one for the previous problem gives

$$L_2 = 3L_1 \qquad A_2 = 3^3 L_1 = 9L_1.$$

3. Let C_1 be a circle of radius and λ a positive number. Let $r_2 = \lambda r$. We call λ the **scaling factor** or **magnification factor**. So in Problem 1 we had $\lambda = 2$ and in Problem 2 the value was $\lambda = 3$. Let C_2 be a circle of radius $r_2 = \lambda r$. How are the lengths and areas of the two circles related?

Solution: The calculation is just about the same as the ones we did for $\lambda=2$ and $\lambda=3$. The result is

$$L_2 = \lambda L_1, \qquad A_2 = \lambda^2 A_1.$$

.. 7