Mathematics 172 Homework, September 11, 2023.

Here are some derivative problems for you to practice. The answers are on the next page.

1.
$$y = x^3 - 4x$$

2.
$$A = t^3 e^t$$

3.
$$P = be^{rt}$$
 Where b and r are constants.

4.
$$y = x^2 + e^{2x} + e^2$$

5.
$$P = P_0 e^{rt}$$
 where P_0 and r are constants.

6.
$$f(x) = x^2 e^{rx}$$

7. If
$$P = a + be^{rt}$$
 where a, b, and r are constants, show

$$P' = r(P - a)$$

1.
$$y' = 3x^2 - 4$$

$$2. \quad \frac{dA}{dt} = t^3 e^t + 3t^2 e^t$$

3.
$$P' = bre^{rt}$$

4. $y' = 2x + 2e^{2x}$ Note that e^2 is a constant and therefore $(e^2)' = 0$.

5.
$$\frac{dP}{dt} = rP_0e^{rt}$$
. Note that as $P = P_0e^{rt}$ that this implies $\frac{dP}{dt} = rP$.

6.
$$f'(x) = rx^2e^{rx} + 2xe^{rx}$$

7. There are several ways to do this. Here is one. Starting with $P=ae^{rt}+b$ take the derivative to get

$$P' = are^{rt}$$
.

In the original equation $P = ae^{rt} + b$ solve for ae^{rt} to get $ae^{rt} = (P - b)$. Plug this into the equation for P' to get

$$P' = r(P - b).$$