Mathematics 172

Quiz 12

Name: K-ey

You must show your work to get full credit.

1. The acceleration due to gravity is g=32 ft/sec². A furlong is 220 yards = 660 feet. A fortnight is two weeks so that

1 fortnight = $14 \times 24 \times 60 \times 60 = 1,209,600$ sec.

What is g in furlongs/fortnight²?

 $g = \frac{70,939,741,040.9}{5000.9} \frac{\text{furlows}}{\text{fort.}}$ $= \frac{32}{(1209600)^2} \frac{\text{fur}}{(\text{forty})^2}$ $= \frac{32}{(1209600)^2} \frac{\text{fur}}{(\text{forty})^2}$

2. A large alligator is 13 feet long and weights 790 lbs. It has as skull that is 1.2 feet long. Deinosuchus was a prehistoric alligator which lived between 82 to 73 million years ago. A partial skeleton of a Deinosuchus is found and its skill is 3.2 feet long. Assume that Deinosuchus had the same proportions as modern alligator and estimate the length and weight of the Deinosuchus

Length \approx 34.67 ft Weight \approx 14,986.4 1bs

Using the skull measurements we none the scaling forter is $\lambda = \frac{3.2}{1.2} = 2.667$ Length scales by λ so

Length of Deino. = 2.667(13) = 34.67 ft

Weight scales by λ^3 Weight of Deino. = $(7.667)^3790 = 14986.9$ 1bs

Weight at Deino. = $(7.667)^3790 = 14986.9$ 1bs

- 3. The crushing pressure of red ceder is 4,560 psi. Assume that a red ceder with a height of 5 feet, the area of its base is .4 feet² and weighs 60 lbs. Then what is the critical height where a red ceder crushes itself under its own weight?
 - Scale the tree by a factor of λ .

 Scaled weight is $W_{\lambda} = 60 \, \lambda^3 \, los$ scaled weight is $W_{\lambda} = 60 \, \lambda^3 \, los$ scaled buse crea is $A_{\lambda} = .4 \, \lambda^2$.

 Averse presure on home is

 Weight = $\frac{W_{\lambda}}{A_{\lambda}} = \frac{60 \, \lambda^3}{.4 \, \lambda^2} = 150 \, \lambda \, ps \, i$ Area = $\frac{G_0 \, \lambda^3}{A_{\lambda}} = 150 \, \lambda \, ps \, i$ At critical height $150 \, \lambda = 4,560 \, so$ $A_{\lambda} = \frac{4560}{150} = 30.4$ Thus critical hight is $5\lambda = 5(30.4) = 152 \, ft$
- 4. A large vat of grape juice has .02 grams of yeast added to it. For the first several hours the size of the yeast colony grows with a constant intrinsic growth rate. After a half hour there is .03 grams of yeast in the vat. Let W(t) be the number of grams of yeast in the vat after t hours.
 - (a) What is the intrinsic growth rate? r = .811 $W(t) = .02 e^{t} S r = .03$ $W(.5) = .02 e^{t} S r = .03$ $e^{.5r} = \frac{.03}{.02} = 1.5$ (b) Give a formula for W(t). $W(t) = .02 e^{t}$
 - (c) How long until there is a kilogram (that is 1,000 grams) of yeast in the vat? $t = \frac{13.34 \text{ hours}}{}$

$$02e^{.811} t = 1000$$

$$e^{.811} t = 1000$$

$$t = \ln(10001.02)/.811$$

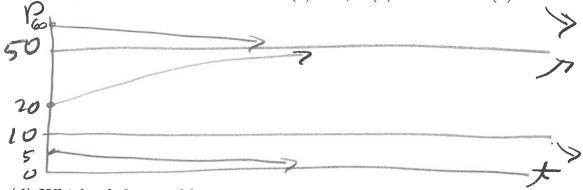
$$= 13.34$$

5. A population grows by the rate equation

$$\frac{dP}{dt} = -.12P\left(1 - \frac{P}{50}\right)\left(1 - \frac{P}{10}\right).$$

(a) If P(4) = 13 what is P'(4)?

$$P'(4) = _{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}} 34632$$

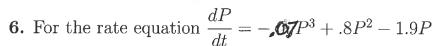

If P(4) = 13 what is P'(4)? P'(4) = 34632 $P'(4) = -312(13)(1 - \frac{13}{50})(1 - \frac{13}{10}) = .34632$

(b) What are the equilibrium points?

The equilibrium points are: 0, 10, 56

Solve -12 P(1-fo) (1-fo) =0

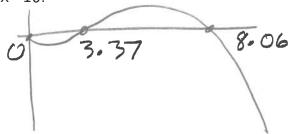
(c) Make a graph of the solutions to the equation showing the equilibrium solutions along with the solutions with P(0) = 5, P(0) = 20 and P(0) = 60.



(d) Which of the equilibrium points are stable?

The stable points are: \bigcirc , \bigcirc

(e) If P(0) = 9 estimate P(98).


P(0) = 9 estimate P(98). $P(98) \approx 0$ This solution will decrease down to 0. go for oux large & P(x) 20. Thus P(98) 20

(a) Use your calculator to make a graph of $\frac{dP}{dt}$ as a function of P and sketch the graph here. *Hint:* Use Xmin=0 and Xmax=10.

graph here. Hint: Use Xmin=0 and Xmax=10. YI = -.07X³ +.8 X²-1.9 X

Zoom 0: ZoomFi+

- (b) What are the equilibrium points? Give your answer to two decimal places.

 P=0 15 class Equilibrium points are: 0, 3.37, 8.06

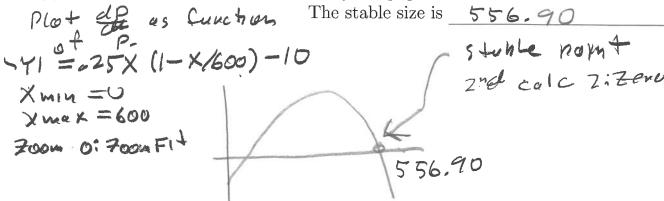
 For the 6ther two use 2" calc 2:200
- (c) What are the stable equilibrium points?

 Stuble noints Stable points are: 0, 8.06

 and whome stone is negative, i.e. down hill
- 7. A population of brewers yeast in a large tank grows logistically with a intrinsic growth rate of r = .25 lbs/hour and a carrying capacity of K = 600. Let P(t) be the number of pounds of yeast in the tank after t hours.
- (a) Write the rate equation satisfied by P. Remark: A rate equation is an equation (so there is an equal sign in it) and also contains a rate (that is a derivative).

Lusis fic equation is

The rate equation is


$$\frac{dP}{dP} = -P(1 - \frac{P}{K})$$

The rate equation is

(b) One the yeast has is at its carrying capacity, it is harvested at a constant rate of 10lbs/hour. Write the new rate equation satisfied by P.

The new equation is
$$\frac{dP}{dt} = -25P(1 - \frac{P}{600}) - 10$$

(c) What is the new stable size of the yeast population in the tank?

