Quiz

Name:

You must show your work to get full credit.

Assume that a type of barrel cactus has a crushing weight of 101 psi. (A psi is 1lb/in².) If a cactus which is 10 inches tall weighs 30 pounds and has a base of area 50 in², what is the critical height where a barrel cactus will crush itself?

Here are some steps to solve this. Let \mathcal{C}_{λ} be a version of the cactus described above by a scale

1. What is the weight of C_{λ} ? Weight scales by λ^3 3023 16

Weight (e) = 302316

50 22 in

2. What is a area of the base of
$$C_{\lambda}$$
? A real S cules by λ^2 .

A real hase $(\ell_{\lambda}) = 50\lambda^2$ in

3. What is a average pressure of the of the cactus on its base? (This is the total weight divided by the area of the base.)

Averse presure
$$(E_{\lambda}) = \frac{30\lambda^3/b}{50\lambda^2/m^2} = \frac{6\lambda/b/m^2}{50\lambda^2/m^2}$$

4. What value of λ makes the average pressure at the base equal to 101psi.

$$501$$
 ve $6\lambda = 101$ $\lambda = 168.3$ $\lambda = 168.3$

5. What is the tallest this type of cactus can get before it crushes under its own weight?

Height scales by
$$7 40$$
Height = 1683 in
$$11014$$

$$1683$$
Height = 1683
Hei