Mathematics 554 Homework.

We have just proven the following:

Theorem 1. Let E and E' be metric spaces and $f: E \to E'$ a function and $p_0 \in E$. Then the following are equivalent.

- (a) f is continuous at p_0 .
- (b) $\lim_{p\to p_0} f(p) = f(p_0)$
- (c) f does right by sequences converging to p_0 . That is if $\langle p_n \rangle_{n=1}^{\infty}$ is a sequence in E with $\lim_{n\to\infty} p_n = p_0$, then $\lim_{n\to\infty} f(p_n) = f(p_0)$.
- (d) If V is an open set in V and $f(p_0) \in V$, then $f^{-1}[V]$ contains an open ball about p_0 . That is there is an r > 0 so that $B_E(p_0, r) \subseteq f^{-1}[V]$. \square

As we have only just defined it here is the official definition of limit $\lim_{p\to p_0} f(p) = q_0$.

Definition 2. Let E, E' be metric spaces and $f: E \to E'$ a function. Let $p_0 \in E$ and $q_0 \in E'$. Then

$$\lim_{p \to p_0} = q_0$$

if and only if for all $\varepsilon > 0$ there is a $\delta > 0$ so that for $q \in E'$,

$$0 < d(p, p_0) < \delta$$
 implies $d'(f(p), q_0) < \varepsilon$,

Definition 3. Let E and E' be metric spaces and $f: E \to E'$ a function. Then f is **continuous** if and only if f is continuous at every point of E. \square

Theorem 4 (Continuous functions are great). Let E and E' be metric spaces and $f: E \to E'$ a function. Then the following are equivalent.

- (a) f is continuous.
- (b) for every $p_0 \in E$ the limit $\lim_{p \to p_0} f(p) = f(p_0)$ holds.
- (c) f does right by all convergent sequences in E, That is if $\langle p_n \rangle_{n=1}^{\infty}$ is a sequence in E with $\lim_{n\to\infty} p_n = p_0$, then $\lim_{n\to\infty} f(p_n) = f(p_0)$.
- (d) If V is an open subset of E', then the preimage $f^{-1}[V]$ is an open subset of E.

Problem 1. Prove this. *Hint:* That

$$(a) \iff (b) \iff (c)$$

follows at once from the equivalence of (a), (b), and (c) in Theorem 1. So you only have to prove (a) \iff (d). Do this in detail.

Problem 2. Let $f: E \to E'$ be a continuous function between metric spaces and \mathcal{U} an open cover of E'. Prove $\{f^{-1}[V]: V \in \mathcal{U}\}$ is an open cover of E.

You have probably seen false proofs such as

$$1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = (i)(i) = -1$$

and

$$1 = \frac{d}{dx}x = \frac{d}{dx}\underbrace{(1+1+\dots+1)}_{x \text{ terms}} \cdot = \underbrace{0+0+\dots+0}_{x \text{ terms}} = 0$$

Here is a variant of false proofs I have seen in homework.

Problem 3. What is wrong with with the following proof that

$$\lim_{x \to 1} \frac{1}{x - 1} = 0.$$

Let $\varepsilon > 0$. Set $\delta = |x-1|^2 \varepsilon$. If $0 < |x-1| < \delta$, then

$$\left| \frac{1}{x-1} - 0 \right| = \frac{1}{|x-1|}$$

$$= \frac{1}{|x-1|^2} |x-1|$$

$$< \frac{0}{|x-1|^2} \delta \qquad \text{(as } |x-1| < \delta)$$

$$= \frac{1}{|x-1|^2} |x-1|^2 \varepsilon$$

$$= \varepsilon.$$

This if f(x) = 1/(x-1) the inequality $0 < |x-1| < \delta$ implies $|f(x) - 0| < \varepsilon$ which verifies that the definition of $\lim_{x \to 1} = 0$ holds.

Problem 4. Show that

$$\lim_{x \to 1} \frac{1}{x - 1}$$

does not exist. \Box