Review for Test 3.

For practice doing the problems on Test 3 on

http://ralphhoward.github.io/Classes/Spring2021/554/and the problems on Test 3 of

http://ralphhoward.github.io/Classes/Fall2018/554/ The second of these pages also has a review for its Test 3 that has some good worked problems.

Problem 1. Definitions you should know:

- (a) The metric space E is **connected**. (This includes knowing what a **disconnection** of a metric is.
- (b) The definition of a metric space being *compact*.
- (c) The definition of a metric space being *sequentially compact*.
- (d) The definition of $\lim_{n\to\infty} p_n = p$.
- (e) The definition of $\lim_{p\to p_0} f(p) = q_0$ where $f: E \to E'$ is a map between metric spaces.
- (f) If $f: E \to E'$ is a map between metric spaces know the definition of f is **continuous** at p_0 ,
- (g) Likewise that say $f: E \to E'$ being **continuous** means that f is continuous at all points of E.
- (h) Know what it means for \mathcal{U} to be an **open cover** of a set S.
- (i) It would not hurt to review what is means for a set to be open or closed and what it means for p to be an adherent point of a set S.

Here are some theorems you should know.

Theorem 1. A subset of a metric space is compact if and only if it is sequentially compact.
Theorem 2 (Heine-Borel Theorem). A closed bounded subset of \mathbb{R}^n is compact.
Theorem 3. An interval in \mathbb{R} is connected.
Theorem 4 (Intermediate Value Theorem). If $f: [a,b] \to \mathbb{R}$ is continuous and $f(a)$ and $f(b)$ have opposite signs, then there is a point $\xi \in [a,b]$ with $f(\xi) = 0$.
Theorem 5. The continuous image of a connected set is connected. That is if $S \subseteq E$ is connected and $f: E \to E'$ is a continuous map between metric spaces, then $f[S]$ is a connected subset of E' .
Theorem 6. The continuous image of a compact set is compact. That is if $f: E \to E'$ is a continuous map between metric space and $K \subseteq E$ is compact, then $f[K]$ is a compact subset of E' .

Theorem 7 (Existence of extreme values). If E is a compact metric space and $f: E \to \mathbb{R}$ is continuous, then f has a maximum and minimum. That

is there are $p_0, p_1 \in E$ such that

$$f(p_0) \le f(p) \le f(p_1)$$

for all $p \in E$. Thus $f(p_0)$ is the minimum value of f and $f(p_1)$ is the maximum value of f on E.