Mathematics 554 Homework.

Problem 1. Find the sums of the following series:

- (a) $\sum_{n} k = 1^{20} x^3 (1 x^2)^k$.
- (b) $\sum_{j=0}^{n} (3j+1)$.
- (c) $\sum_{k=0}^{n} 2^k \binom{n}{k}$.

Problem 2. (a) State the binomial theorem.

(b) Simplify $\frac{(a+h)^4 - (a-h)^4}{2h}$. (The answer should not have an h in the denominator.)

Problem 3. (a) Define what it means for a function $f:[a,b] \to \mathbb{R}$ to be Lipschitz.

- (b) Show that the function $f(x) = 3x^2 1$ is Lipschitz on the interval [-4, 3]. (c) Show that $g(x) = \frac{x+3}{x+4}$ is Lipschitz on [1, 5].
- (d) Show the function $h(x) = \sqrt{x}$ is not Lipschitz on [0,1].

Problem 4. Show $x^2 - 2xy + 2y^2 \ge 0$ with equality if and only if x =y = 0. Hint: There are many ways to do this, but one natural one involves completing the square.

Problem 5. (a) State the Intermediate Value Theorem for Lipschitz functions on an interval [a, b].

(b) Show the $p(x) = x^4 + 3x - 1$ has at least two real roots. (You may assume polynomials are Lipschitz.)

Problem 6. Show that if $|x| \ge \max\{1, 2(|a| + |b|)\}$, then

$$1 + \frac{a}{x} + \frac{b}{x^2} \ge \frac{1}{2}.$$

Problem 7. (a) State the Least Upper Bound Axiom.

- (b) Give an example of a set which is bounded both above and below, that has a maximum but no minimum.
- (c) Let $S \subset [0, \infty)$ be bounded above and let

$$T = \{s^2 : s \in S\}.$$

Show

$$\sup(T) = (\sup(S))^2.$$

Hint: One way is to prove the two inequalities $\sup(T) \leq (\sup(S))^2$ and $(\sup(S))^2 \leq \sup(T)$. The first of these follows without too much trouble from definitions. For $(\sup(S))^2 \leq \sup(T)$ let $\varepsilon > 0$ and show $(\sup(S) - \varepsilon)^2 < \sup(T)$ holds.

Problem 8. (a) State the big version of Archimedes Axiom.

(b) Prove Archimedes from the Least Upper Bound axiom.

Problem 9. Let $S \subset \mathbb{R}$ have the property that if $s \in S$, there is anther $s' \in S$ with s' > s + 1/2. Show S is not bounded above.

Problem 10. Solve the inequality $\frac{3x-1}{1-2x} \ge 4$.

Problem 11. (a) State the Cauchy-Schwartz inequality for vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$

(b) Use the Cauchy-Schwartz inequality to prove the Triangle Inequality $\|\mathbf{a} + \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\|$.

Problem 12. (a) Define (E, d) is a *metric space*.

(b) Let $p \in E$ and r > 0 define B(p,r) (the **open ball** of radius r about p), and the $\overline{B}(p,r)$ (the **closed ball** of radius r about p).