Mathematics 554H/703I Test 2 Name: Answer Key
Show your work to get credit.

- 1. (10 points) State the following:
 - (a) The **Bolzano Weierstrass Theorem**.

Solution. I accepted several different versions:

- (Preferred version) A closed bounded subset of \mathbb{R}^n is compact. (or is sequentially compact.)
- ullet A closed bounded subset of $\mathbb R$ is compact. (or is sequentially compact.)
- A bounded sequence in \mathbb{R}^n (or of \mathbb{R}) has a convergent subsequence.
- (b) The definition of \mathcal{U} is an **open cover** of S.

Solution. Is S is a subset of the metric space E then \mathcal{U} is an open cover of S if and only if

- (a) Each $U \in \mathcal{U}$ is a open subset of E,
- (b) $S \subseteq \bigcup \mathcal{U}$ (or equivalently for each $s \in S$ there is a $U \in \mathcal{U}$ with $s \in U$).
 - (c) S is a **bounded** subset of a metric space.

Solution. S is a bounded subset of E if and only if there is $p \in E$ and r > 0 so that $S \subseteq B(p, r)$. (Equivalently: S is bounded if and only if it is contained in a ball.) Note: Saying there are numbers a and b so that $a \le s \le b$ for all $s \in S$ does not make sense in a general metric space. That is only a good definition of bounded in \mathbb{R} .

2. (10 points) Use the least upper bound axiom to give a N, ε proof that a bounded monotone increasing sequence is convergent.

Solution. Let $\langle x_n \rangle_{n=1}^{\infty}$ be a monotone increasing sequence in \mathbb{R} which is bounded. Let $b = \sup\{x_n : n \in \mathbb{N}\}$, which exists as the sequence is bounded. We now show $\lim_{n\to\infty} x_n = b$ which will show the sequence converges. Let $\varepsilon > 0$. Then these is a $N \in \mathbb{N}$ so that $b - \varepsilon < p_N \le b$ (otherwise $b - \varepsilon$ would be an upper bound of $\{x_n : n \in \mathbb{N}\}$ less than the least upper bound b). As the sequence is monotone increasing if $n \ge N$, then $b - \varepsilon < x_N \le x_n \le b$. This implies $|x_n - b| < \varepsilon$. Therefore $n \ge N$ implies $|x_n - b| < \varepsilon$. That is $\lim_{n\to\infty} x_n = b$.

3. (15 points) (a) Let E be a metric space. Define S is a **compact** subset of E.

Solution. The set is a compact subset of E if and only if every open cover of S has a finite subcover.

(b) Let S be a compact subset of E and assume S is infinite. Prove there is a point $p \in S$ so that $S \cap B(p, r)$ is infinite for all r > 0.

Solution using open covers. Towards a contradiction assume that for each $p \in S$ there is an $r_p > 0$ so that $S \cap B(p, r_p)$ is finite. Then (as we have seen before)

$$\mathcal{U} := \{ B(p, r_p) : p \in S \}$$

is an open cover of S. As S is compact there is a finite subcover

$$\mathcal{U}_0 = \{B(p_1, r_1), B(p_2, r_2), \dots, B(p_n, r_n)\}\$$

where we have simplified notation by setting $r_j := r_{p_j}$. As $S \subseteq \bigcup \mathcal{U}_0$ we have

$$S = S \cap \bigcup_{j=1}^{n} B(p_j, r_j) = \bigcup_{j=1}^{n} (S \cap B(p_j, r_j)).$$

Thus S is finite union of finite sets, contradicting that S is infinite.

Solution using sequential compactness. As S is compact it is sequentially compact. As S is infinite we can choose a sequence $\langle p_n \rangle_{n=1}^{\infty}$ where $p_i \neq p_j$ when $i \neq j$. (To see this start by choosing any $p_1 \in S$, then, as S is infinite, there is a $p_2 \in S$ with $p_2 \neq p_1$, and we can keep going, having chosen $p_1, p_2, \ldots, p_n \in S$ all distinct from each other, there is a $p_{n+1} \in S \setminus \{p_1, p_2, \ldots, p_n\}$ as S is infinite.) As S is sequentially compact there is a convergent subsequence $\langle p_{n_k} \rangle_{k=1}^{\infty}$ with $\lim_{k \to \infty} p_{n_k} = p$ for some $p \in S$. Let r > 0, then (by letting $\varepsilon = r$ in the definition of limit) there is a N so that if k > N, then $p_{n_k} \in B(p,r)$. Then B(p,r) contains the infinite set $\{p_{n_k} : k > N\}$ and as all of the points p_{n_k} are in S we see that $B(p,r) \cap S$ is infinite for all r > 0.

4. (15 points) Let E be a compact metric space and $f: E \to \mathbb{R}$ a function with the property that if $\langle p_n \rangle_{n=1}^{\infty}$ is a convergent sequence in E, then

$$\lim_{n\to\infty} f(p_n) = f\Big(\lim_{n\to\infty} p_n\Big).$$

Let $M = \sup_{p \in E} f(p)$. Show there is a point $p_0 \in E$ with $f(p_0) = M$.

Solution. As E is compact, it is sequentially compact. We will find the point p_0 as the limit of a subsequence of a sequence of cleverly chosen

points in E. Here is the clever choice:¹ for each $n \in \mathbb{N}$ there is a point p_n so that

$$M - \frac{1}{n} < f(p_n) \le M.$$

This follows from the definition of the supremum (otherwise M-1/n would be an upper bound less that the least upper bound). Note $|f(p_n) - M| < 1/n$ and so by a now familiar argument

$$\lim_{n \to \infty} f(p_n) = M.$$

As the space is sequentially compact there is subsequence $\langle p_{n_k} \rangle_{k=1}^{\infty}$ which converges to a point of E, say

$$\lim_{k\to\infty}p_{n_k}=p_0.$$

This defines the point, p_0 , we are looking for. We now verify it does what we want:

$$f(p_0) = f\left(\lim_{k \to \infty} p_{n_k}\right) = \lim_{k \to \infty} f(p_{n_k}) = M$$

and we are done.

5. (20 points) (a) Define what it means for A, B to be a **disconnection** of the metric space E.

Solution. The set A and B a disconnection of E if and only if

- (a) A and B are nonempty,
- (b) A and B are both open,
- (c) $A \cup B = E$, and
- (d) $A \cap B = \emptyset$.
 - (b) Define what it means for a metric space E to be **connected**.

Solution. The space E is connected if and only if it has no disconnection. \Box

(c) Recall that a set A in a metric space is **clopen** if and only if it is both open and closed. Prove a metric space is connected if and only if the only clopen sets in E are E and \varnothing .

Solution. We prove the equivalent statement that a metric space is disconnected if and only if it contains a clopen set other than E and \varnothing .

 $^{^{1}}$ This choice is not really very clever once you have seen several problems of this type.

First assume that E has a disconnection $E = A \cup B$. Then A is open by the definition of disconnection and also form the definition of disconnection we have that $A = E \setminus B$ is the compliment of B in E. As B is open this implies A is closed. Thus A is clopen. Finally $A \neq \emptyset$ by the definition of disconnection and $A \neq E$ as $B \neq \emptyset$ and $A \cap B = \emptyset$ we have $A \neq E$. So E contains a clopen set other than E and \emptyset .

Second assume that E contains a clopen set A other that E and \varnothing . Let $B = E \setminus A$ be the compliment of A in E. As A is closed and B is the compliment of A, we have that B is open. As $A \neq E$ we have that $B \neq \varnothing$. As B is the compliment of A it follows $A \cap B = \varnothing$ and $E = A \cup B$. Therefore A, B is a disconnection of E.

6. (10 points) Show the only nonempty connected subsets of the rational numbers, \mathbb{Q} , are the one point sets $\{p\}$. *Hint:* You may assume that between any two rational numbers, there is an irrational number.

Solution. If a set has a disconnection $A \cup B$ then as each of A and B is nonempty the set $A \cup B$ has at least two points. Therefore a one point set has no disconnection and is thus connected. So all the one point subsets of \mathbb{Q} are connected.

So we only need to show that any subset of \mathbb{Q} which has more than one point is disconnected. Let $E \subseteq \mathbb{Q}$ have at least two points. Let $a,b \in E$ with $a \neq b$. We can assume that a < b. Then there is an irrational number c with a < c < b. Let

$$A = (-\infty, r) \cap E = \{x \in E : x < c\}$$
$$B = E \cap (r, \infty) = \{x \in E : c < x\}.$$

Then by their constitution and that $c \notin E$ we have

$$E = A \cup B$$
, $A \cap B = \emptyset$.

Also $A, B \neq \emptyset$ as $a \in A$ and $b \in B$.

As this point I was ok with someone just saying that it is clear that A and B are open. If you want a blow by blow here is is. To see A is open note if $x \in A$ and r = (c - x), then the ball B(x, r) in A is

$$B(x,r)i = \{ y \in E : |x - y| < r = (c - x) \}$$

= $E \cap (x - r, x + r)$
= $E \cap (2x - c, c) \subseteq A$.

Thus A contains a ball around each of its points and so is open. A similar argument shows B is open. Therefore $E = A \cup B$ is a disconnection of E and so E is not connected.

7. (10 points) (a) Let S be a set in the metric space E . Define what if means for p to be an adherent point of S .
Solution. The point p is an adherent point of S if and only if for all $r > 0$
$r > 0$ $S \cap B(p, r) \neq \emptyset.$
(b) Prove that if S is closed and p is an adherent point of S, then $p \in S$.
Solution. Towards a contradiction assume that $p \notin S$. As S is closed the compliment $\mathcal{C}(S)$ is open. As $p \in \mathcal{C}(S)$ and (S) is open there is a ball $B(p,r) \subseteq \mathcal{C}(S)$. But then $B(p,r) \cap S = \emptyset$, which contradicts that p is an adherent point of S .
8. (10 points) Give examples of the following (no proofs required):(a) An open cover of R with no finite subcover.
Solution. Here are several examples
$\{(-r,r): r>0\}, \qquad \{(-n,n): n\in\mathbb{N}\}, \qquad \{(n,n+2): n\in\mathbb{Z}\}.$
In all three of these example, if \mathcal{U}_0 is a finite subset of the cover, the union, $\bigcup U_0$ is a bounded interval and thus not all of \mathbb{R} .
(b) A subset of \mathbb{R} that is neither open or closed.
Solution. We have done many examples of this. Here are some $[0,1)$, \mathbb{Q} , $\{1/n:n\in\mathbb{N}\}$.
(c) A subset S of \mathbb{R} and a point p so that p is an adherent point of S by $p \notin S$.
Solution. One example is $S=(0,1]$ and $p=0$. Anther is $S=\mathbb{Q}$ and p any irrational number. \square