Name: Key

You must show your work to get full credit.

1. Use induction to show the n-derivative of

$$f(x) = \frac{1}{x}$$

is

$$f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}.$$

It will make the calculations easier it we write $f(x) = x^{-1}$ and show $f^{(4)}(x) = f^{(4)}(x) = f^{(4)}(x) = f^{(4)}(x)$

Bose case: u=1. f'(x) = (-1) \(\tilde{\chi}^2 = (-1)^1 1! \(\tilde{\chi}^{1-1} \)

so the hose case holds

Induction step: Assume -n-!

take $\frac{d}{dx}$ of hotu sides to set $e^{(n+1)}(x) = \frac{d}{dx} (-1)^{n} n! \chi^{-(n+1)}$ $= (-1)^{n} n! (-(n+1)) \chi^{-(n+1)-1}$ $= (-1)^{n+1} n! (n+1) \chi^{-(n+1)-1}$ $= (-1)^{n+1} (n+1)! \chi^{-(n+1)-1}$

wherey closes the judgetter.

2. (a) Use induction to show: if $a \equiv b \pmod{m}$, then $a^n \equiv b^n \pmod{m}$ for all $n = 1, 2, 3, \ldots$

Rose cose:
$$n=1$$
 $a=b$ (modu), e $a=b$ (modu).

This is siven.

Induction step: Assure a 433h (mod m).

$$a \cdot a^{n} \equiv b \cdot b^{n} \pmod{m}$$

$$a \cdot a^{n+1} \equiv b^{n+1} \pmod{m}$$

This closes the ruduction.

(b) Show that $7|(9^n - 2^n)$ for n = 1, 2, 3, ...

We have
$$q \equiv 2 \pmod{7}$$

so by nort (4)
 $q^{4} \equiv 2^{4} \pmod{7}$

which implies

94-24 = 79 some 96-81.

50 7 (94-24).

3. Show that if McNuggets come in packages of size 4 and 6, then for any it is possible to buy exactly m McNuggets for any even number $m \ge 4$.

For the small comes 9 = 4 6 = 6 8 = 4 + 4 10 = 4 + 6

which cowns the hose case(s). To show

true for all even mzy, it is enough

to grow if true for some mz/o

(as we have done the cases m=10),

then true for entz.

Linduction 9 tep Assure we can get a

Gose At least one of our nacks has a Mc Nuggets. Then take , to but and replace with a size 6 nack, to set mi -9+6 = m+2.

Cose? those one no size 4 packs in our hag of Mc Nuggets. Thou all hogg are of size 60 Take out a size 6 pack and add in 2 size 4 packs to get m-6+4+4 = m+2.

dona

4. Let a_n be defined by the recursion

(a) Compute
$$a_{1} = \frac{2}{3}a_{n} + 6$$
, $a_{1} = 3$.
$$a_{3} = \frac{39}{3}$$

$$a_{4} = \frac{122}{3}$$

$$a_{1} = \frac{2}{3}a_{6} + 6 = \frac{2}{3}(3) + 6 = 2 + 6 = 8$$

$$a_{1} = \frac{3}{3}a_{6} + 6 = \frac{3}{3}(3) + 6 = 2 + 6 = 8$$

$$a_{2} = \frac{3}{3}(8) + 6 = \frac{16}{3} + \frac{18}{3} = \frac{39}{3}$$

$$a_{3} = \frac{2}{3}(\frac{39}{3}) + 6 = \frac{69}{9} + \frac{59}{9} = \frac{122}{9}$$

(b) Prove $a_n < 18$ for all n.

Then
$$aut_1 = \frac{2}{3}a_4 + 6$$

 $< \frac{2}{3}(18) + 6$ (as $0u < 18$)
 $= 12 + 6 = 18$,

(c) Prove $a_{n+1} > a_n$ for all $n \ge 1$.

Bose coce:
$$n=1$$
. $Q_{l+1}=q_2=8>q_1=3$,

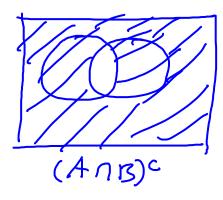
±uduction & tel Assure anti>au.

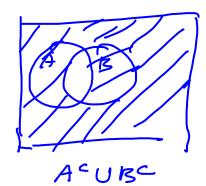
Then
$$a_{n+2} = \frac{2}{3}a_{n+1} + 6$$

 $> \frac{2}{3}a_{n+1}$
 $= a_{n+1}$

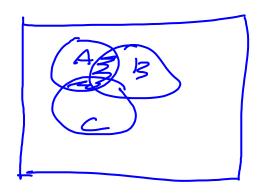
dans

- 5. Use Venn diagrams to show each of the following:
 - (a) $(A \cap B)^c = A^c \cup B^c$.

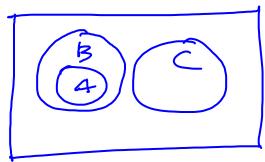




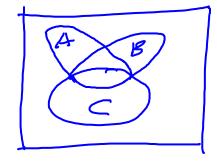
(b) $A \cap (B \cup B) = (A \cap B) \cup (A \cap C)$.



- **6.** Draw Venn diagrams showing the following relations between A, B, and C.
 - (a) $A \subseteq B$ and $B \cap C = \emptyset$.



(b) $A \cap C = B \cap C$.



$$A = \{n \in \mathbb{Z} : nis \text{ even } \}$$
$$B = \{x(x+1) : x \in \mathbb{Z} \}$$

- (a) Show $B \subseteq A$.
- (b) Show A is not a subset of B.
- (a) Let b & B. Then b = x(x+1) for some x & 7.

 $\frac{\text{Covel}}{\text{SO}}$ χ is even. Then $\chi=2q$ for some q+q $\frac{\text{SO}}{\text{SO}}$ $b=2q(\chi+q)=2q^{\alpha}$ where $q^{\alpha}=q(\chi+q)$ $\frac{\text{SO}}{\text{SO}}$ Thus p is even

Zocoz χ 15 odd. Then $\chi = 2g+1$ for sovered EX.

Thus $y = \chi(2g+1+1) = \chi(2g+2)$ $= 2\chi(g+1) = 2g'$ with $g'' = \chi(g+1) \in \chi$, so h is

even 14 T415 eage also.

Thus 56B multer be A. SO BSA.

M) a=q is even. But if $q \in B$, then 4=x(x+1) some $x \in \mathbb{Z}$.

That is $x^2+x-4=0$, following for $x \in \mathbb{Z}$ since $x \in \mathbb{Z}$ $x \in \mathbb{Z}$ which is not an integer, so $y \notin B$. Thus $x \notin \mathbb{Z}$,

$$A = \{k \in \mathbb{Z} : k \equiv 1 \pmod{3}\}\$$

$$B = \{9x + 6y + 4 : x, y \in \mathbb{Z}\}.$$

Prove A = B.

Lot beB. Then b= 9x+64, 34 con some Kyt& Those fore 5= 9χ+6y+4≡6x+04+1 (mod3) = 1 (mod 3) 90 55A. Therefore BSA.

Le+ a∈A. Then a≡1 (mod 3)

a-1=39 for some 966.

Thou a = 39+1 = 39-3+4 = 3(9-1)+9 = 9(97) -6(97) +4 = 97 +69 +9

where x=9-167, 4=-(87) 63/ Therefore a 613. This show ACB.

SO ASB and BCA, Thus A=B.