Quiz 9

Name: Key

You must show your work to get full credit.

1. State the definition of m divides n.

m/n => m, n are integers, in =0 and there is an integer of so that n=que

2. State the definition of a is congruent to b modulo n, that is of $a \equiv b \pmod{n}$.

 $a \equiv b \pmod{m} \iff a, b, m \in \mathbb{Z}, m \geqslant 1 \text{ and}$ there exists a g to \mathbb{Z} with a - b = g ur.

3. Which of the following is true and why?

(a) $6 \equiv 8 \pmod{3}$

True or false? Fa/sc

Why?

6-9=2 and $3\cos$ nat divide 2rThus $6\neq 8 \pmod{3}$

(b) $5 \equiv 13 \pmod{3}$ Why?

True or false? ______F%____

5-13=-8 and 3 does not divide -8.

4. Prove that if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

$$a-b+b-c=g_1u+g_2y$$

$$a-c=(g_1+g_2)u=gu$$
where $g=g_1+g_2\in \mathcal{U}$. Thus
$$a=c\pmod{n}$$

5. Prove that if $a \equiv b \pmod{n}$ and $x \equiv y \pmod{n}$, then $a + x \equiv b + y \pmod{n}$.

Assume a = 4 (mod u) and x=9 (mod y). Then those exist 8, 826 7 with

$$a - b = 8, 4$$
 $x - y = 824$

Add these to get

$$(a+x)-(b+4)=q_1n+q_2n=(q_1+q_2)n=q_1n$$

where $g=b_1+q_2\in Z_2$ Thus