\sim	•	10
(J)	117	13
~ .		

Name:

You must show your work to get full credit.

1. What is the remainder when 43,716 is divided by 9?

The remainder is _____

Theorem. Let $n \in \mathbb{N}$ be a natural such that \sqrt{n} is not an integer. (That is $n \neq k^2$ for any integer k.) Then \sqrt{n} is irrational.

We give a proof of this in several steps. To start assume, towards a contradiction, that \sqrt{n} is rational. Then

$$\sqrt{n} = \frac{p}{q}$$

where p and q are positive integers. Then

$$q\sqrt{n} = p.$$

Thus $q\sqrt{n} \in \mathbb{N}$, that is $q\sqrt{n}$ is an integer. Of all the ways to write $\sqrt{n} = p/q$ as a rational number we choose the one where q is smallest. That is

 $q = \text{smallest natural number } k \text{ such that } k\sqrt{n} \text{ is an integer.}$

The contradiction what ends this proof will be finding a natural number $q^* < q$ such that $q^* \sqrt{n} \in \mathbb{N}$. As \sqrt{n} is not a whole number (we are assuming \sqrt{n} is not an integer) we can write

$$\sqrt{n} = k + f$$

where $k = \lfloor \sqrt{n} \rfloor$ is the greatest integer in \sqrt{n} and f satisfies

$$0 < f < 1$$
.

(That is f is a fraction in the sense it is between 0 and 1.)

2. Show $fq \in \mathbb{N}$. Hint: $fq = (\sqrt{n} - k)q$.

3. Let q^* be the integer $q^* = fq$. Show $q^* < q$.

4. Show $q^*\sqrt{n} \in \mathbb{N}$ Hint: $q^*\sqrt{n} = qf\sqrt{n} = q(\sqrt{n} - k)\sqrt{n}$.

5. Explain why $q^* < q$ and $q^* \sqrt{n} \in \mathbb{N}$ gives a contradiction.