Name:____

You must show your work to get full credit.

1. Use induction to show the n-derivative of

$$f(x) = \frac{1}{x}$$

is

$$f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}.$$

2. (a) Use induction to show: if $a \equiv b \pmod{m}$, then $a^n \equiv b^n \pmod{m}$ for all $n = 1, 2, 3, \ldots$

(b) Show that $7|(9^n - 2^n)$ for n = 1, 2, 3, ...

$m ext{ McNuggets}$	for any even n	umber <i>m</i> ≥ -		

4. Let a_n be defined by the recursion

$$a_{n+1} = \frac{2}{3}a_n + 6, \qquad a_1 = 3.$$

(a) Compute

$$a_2 = \underline{\hspace{1cm}} a_3 = \underline{\hspace{1cm}} a_4 = \underline{\hspace{1cm}}$$

$$a_3 =$$

$$a_4 =$$

(b) Prove $a_n < 18$ for all n.

(c) Prove $a_{n+1} > a_n$ for all $n \ge 1$.

- 5. Use Venn diagrams to show each of the following:
 - (a) $(A \cap B)^c = A^c \cup B^c$.

(b) $A \cap (B \cup B) = (A \cap B) \cup (A \cap C)$.

6. Draw Venn diagrams showing the following relations between A, B, and C. (a) $A \subseteq B$ and $B \cap C = \emptyset$.

(b) $A \cap C = B \cap C$.

7. Let

$$A = \{ n \in \mathbb{Z} : nis \text{ even } \}$$

$$B = \{ x(x+1) : x \in \}.$$

- (a) Show $B \subseteq A$. (b) Show A is not a subset of B.

8. Let

$$A = \{k \in \mathbb{Z} : k \equiv 1 \pmod{3}\}$$

$$B = \{9x + 6y + 4 : x, y \in \mathbb{Z}\}.$$

Prove A = B.