Mathematics 300 Test 1 Show your work to get credit.

Name: Key

The problems are worth 10 points each.

1. (10 points) Define the following:

(a) The integer n is even.

There is an integer of such that in =24

- (b) The integer n is odd.

 There is an integer of such that u=24+1
- (c) The integer a divides the integer b (in symbols $a \mid b$). $a \neq 0$ and those is an integer q such that b = qa.
- (d) For integers a, b, n the a is congruent to b modulo n. (in symbols $a \equiv b \pmod{n}$.)

 NO and those is an integer of seath that a-b=0
- 2. (5 points) Prove or give a counterexample: If n is an integer and $9 \mid n^2$, then $9 \mid n$. (If you give a counterexample, your answer should be at least one complete sentence explaining why it is a counterexample.)

counterexample n=6. Then 9/12=36, but 94 n=6.

3. (10 points) Prove or give a counterexample: If $n \equiv -1 \pmod{6}$, then $n^2 \equiv 1 \pmod{6}$. (If you give a counterexample, your answer should be at least one complete sentence explaining why it is a counterexample.)

Then
$$N-(-1) = N+1 = 606$$

for some integer to so $N = 68-1$
 $N = 68-1$
 $N = 68-1$
 $N = 68-1$
 $N = 69-1)^2 = 369^2 - 129+1$
 $N = 600$
 N

4. (10 points) (a) Make a truth table for $P \to (P \to Q)$.

(b) Is
$$P \to (P \to Q)$$
 logically equivalent to $P \to Q$? Explain your answer.
 Yes the two brone the same truth $+uH/e$

5. (15 points) For the statement:

If a number is green, then it is even.

(a) Give the converse.

If a number 15 even, then it is green

(b) Give the contrapositive.

If a number is code, than it is not green

(c) Give the negation.

The number 15 green, but not even.

6. (5 points) What is the negation of the statement:

All blue dogs vote for red cats

Some blue dog does not vote for red cats.

7. (5 points) A subset $S \subseteq \mathbb{R}$ is **bounded above** if and only if there is $b \in \mathbb{R}$ such that $x \leq b$ for all $x \in S$. What does in mean for S to not be bounded above? (That is what is the negation of the statement "There is $b \in \mathbb{R}$ such that $x \leq b$ for all $x \in S$ ".

For all help such that x>b for some x65

8. (10 points) Prove: If a and b are integers with a odd and $b \equiv 2 \pmod{3}$, then (a+5)(b+1) is divisible by 6.

Assume a 15 odd and
$$b = 2 \pmod{3}$$
. Then

there are $M, y \in \mathbb{H}$ so that

 $a = 2m + 1, b - 2 = 3m$.

Lie $a = 2m + 1, b = 3m + 2$

Then

 $(a + 5)(b + 1) = (2m + 1 + 5)(3m + 2 + 1)$
 $= (2m + 6)(3m + 3)$
 $= (2(m + 3))(3(n + 1))$
 $= 6 (m + 3)(m + 1)$

where $g = (m + 3)(m + 1) \in \mathbb{H}$.

So $G = (2m + 6)(3m + 1) \in \mathbb{H}$.

9. (10 points) Prove: If n^7 is odd, then n is odd.

we prove the converse: If n is even, then
$$N^7$$
 is even.

Assume n is even. Thus $n=26$ for some $g \in \mathcal{Z}_c$. So $N^7 = (26)^7 = 2(269^7) = 2Q$

where $Q = 269^7 \in \mathcal{Z}_c$. Thus N^7 is even.

10. (10 points) Prove: If $x \equiv a \pmod{n}$, then $x^2 + x \equiv a^2 + a \pmod{n}$.

Assume
$$\chi \equiv a$$
 (mod n). Then those is $a \neq b \neq Z$ with $\chi - a = q \cdot n$.

$$(\chi^{2}+\chi) - (\alpha^{2}+\alpha) = (\chi^{2}-\alpha^{2}) + i\chi - \alpha)$$

$$= (\chi - \alpha)(\chi + \alpha) + i\chi - \alpha)$$

$$= (\chi - \alpha)(\chi + \alpha + i)$$

$$= gn i\chi + \alpha + i) \quad (\alpha \leq \chi - \alpha = gn)$$

$$= n Q$$
whome $Q = gi\chi + \alpha + i) \in \mathcal{Z}$.

11. (10 points) (a) Write
$$A = \{x \in \mathbb{N} : x^2 = 16\}$$
 in roster notation.

 $A = \underbrace{\{4\}}_{A}$
 $A = \underbrace{\{4\}}_{A}$

(b) Write
$$B = \{-7, -6, \dots, 5, 6\}$$
 is set builder notation. $B = \{1, 1, 2, \dots, 5, 6\}$